ull
by HARMAN

LANGUAGE REFERENCE GUIDE

NETLINX PROGRAMMING LANGUAGE

File Edit View Project Build Diagnostics Debug Tools Settings Window Help
Do GEI & L =282 00 |G B2 BEAMEAD D EE R D RE MRS T B B B E
Bith @ 1 an oo 90 | B | 4 % % % o e e e I S e C‘SG&I‘I@F R bt A O AL ARy [

Workspace Bar b4
NewlInclude.axi o || @] =

= ‘Workspace 'New Workspace': 1 Project(s) ™
& wew Project New Moduleaxs e
(=2 NetLinx [COM1, 38400])
12 Source NetLinx Code.axs E’
M) Nettinx Code a0 B Ty, ~
& Indude 41 =DEFINE MUTUALLY EXCLUSIVE
: B mewinclude 4z
E!E'Mudule 43 R R R RHN)
- New Modue a4 (* SUBROUTINE/FUNCTION DEFINITIONS GO BELOW =)
] L6 _Bectronics Monitor_LGM-1_1.0.0 Bonmnnnn s nnn s n s nn R AR R)
& User Interface 46 (* EXAMPLE: DEFINE FUNCTION <RETURN TYPE> <NAME> (<PARRMETERS>) *)
: {i& LBC,MXT-10011BC1,123,1_0,LBC R — o - -
= 47 (* EXAMPLE: DEFINE C '<NEME>' (<PRREMETERS>) *)
BB IR !
2 sony0532 1< =3
3 Other 49 [R R R R R R R R R R R R R R
— 50 (= STARTUP CODE GOES BELOW =)
51 [RRRRRRRRRR RRRR RR RRRR RRRR R RR
52 =DEFINE START v
< - >
flia NetLinx Code.axs | fiil MewInclude.axi fifs New Module.axs 4 b %
Qutput Bar x
D:\AMX Projects\NetLinx Studic\v4.3 Workspace\lNetlinx Code.axs - 0 error(s), 0 warning(s) -
Compiled Code takes 13369 bytes of memory -- Token and Variable Count is 744 (Maximum is 200000)
Compressing Source Code Files...
Created SRC file: D:\AMX Projects\NetLinx Studio\v4.3 Workspace\NetLinx Code.src
NetLinx Compile Complete [04-21-2016 11:39:51]
< s >>>>——— Netlinx Compiles: 2 Files 0 Total Error(s) 0 Total Warnings(3) -——<<<<
v
@ workspace | B Online Tree -« |» 4 Ststus {FindInFiles A Find IRFiles { File Transfer Status 4 Notifications _{ Diagnostics 3
IRead}f |[®off | Push-Inactive | COM1, 38400 | | Ln 6 Col 28 | CAP| OVR| NUM|

AV FOR AN IT WORLD

COPYRIGHT NOTICE

AMX®© 2016, all rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of AMX. Copyright protection claimed
extends to AMX hardware and software and includes all forms and matters copyrightable material and information now allowed by statutory or judicial
law or herein after granted, including without limitation, material generated from the software programs which are displayed on the screen such as
icons, screen display looks, etc. Reproduction or disassembly of embodied computer programs or algorithms is expressly prohibited.

LIABILITY NOTICE

No patent liability is assumed with respect to the use of information contained herein. While every precaution has been taken in the preparation of this
publication, AMX assumes no responsibility for error or omissions. No liability is assumed for damages resulting from the use of the information
contained herein. Further, this publication and features described herein are subject to change without notice.

AMX WARRANTY AND RETURN POLICY

The AMX Warranty and Return Policy and related documents can be viewed/downloaded at www.amx.com.

Table of Contents

Table of Contents

NetLinx Programming LanguUageccccccceecreiieeirencrencreceecreecracenscescsnscsnscenseens 1 7

L0 Y= T 17
Conventions Used in ThiS DOCUMENT........... ittt ses e es e s seas e s ssssssssssesasaass sssses 17
NetLinX Programming OVEIVIEW......cccceuueiiiremueiiiiiienniiiiieeueiiiimeseesisimessssssmmessssssssssssssns 17
=TT 1T T 17
Understanding When DEFINE_PROGRAM RUNSccitteuuieeeteennnieeereenanesceseennssessessnsssesesssnanssssssnnnnnanss 18
SUMMIAIY ceuuuuiiiiiiiiiiteietetetieiiieietetestsesessesieiessteteresssssssssssssssseteeesssssssssssssssteteeesssssssssssssteseessssssssssssssssseeesssssssnsns 18

The Four Conditions That Cause the NetLinx Master To Run DEFINE_PROGRAM...........cccccovvueteiiiiinuneeciscssneeeene 18

LI LT E= T e =T I =T o N 18
WIItING TO @ VAK@DIE: ... eneeceneeee ettt s e s se s s s s ssssnnnnsessesssssssssssssssessesssssssssssssssnssnne 19

B LI IR = 11 == 1 =30 1T £ = 19

The EMPLY EVENE QUEUE.....ceeeeeeeeeeeeeeeetieecieescceeeeereessnnsnssneeneeeeeeseaessesssssssssssssssssssssssnssessessssassasssasssesssssssssssssssnsnnne 20
Statements and EXPreSSIONS..... v iiieeciiieeeeteeeereeeeerenneerenseseansessnsssssasssssenssssensssssnsssses 20
1] = 1= 3 = o | =N 20
EXPIESSIONS. ... iiieiiieeiiieeieiteeetteneeeteeniereesassanssssensssrenssssensssssnssssenssssensssssnsssssnsssssnsssssnssssasssssnsssssnsssssnnnns 20
ASSIGNMENTEScce et ecreeeereeeereneeeerensessesssssenssssenssssenssssenssssenssssensssssnnsssannsesnen 20
L= 1 =1 =3RRI 20
(010170 171 Aol 3 F-1 1 4 1=1 =30 OO RUPPIN 21

L0 T 1 1 T=T 41 €= N 21
| s (=T o | 4] { 1= 3OO URRRPRPRND.)
OVEIVIEW ..ciieeiiiiiiineeiiiiieeeietiieeeeietieaaeessttanssssssressssssstessssssssesssssssssessssssssssnssssssssnnsssssssnnss 22
7= T o= =N 22
Device Numbers - Supported Ranges by Device TYPE ..cccuceirieeeiiiiieenncceineenecesneennneennens 22
Master DeVICE NUMDETot sss s s s e s st s e s s e e s st e nanaesssssssssssssssssnsannanssssssssns 22
PRYSICAl DEVICES ...uuciiiieeeiiiiiiiieiiciiiitenieeiitenesisstteennsssssierensssssssssnssssssssssnsssssssssnsesssssssnnssssssnnssssssssnnnsnsns 22
Dynamically ASSIGNEA DEVICES ...ceuueeeiiiiiiiiiiiiiiieeennenneesneessisssieessseesseessesssnsssssssssssssssssssssssssssssnnnnsssssssssss 23

R 0 = T 0 T3 o = R 23
DEVICE AITAYS.cuuiiiieeeeiirirennniiiiennssssirsnssssssiesssssssssssssssssssssssssssssssssssssssnsssssssssssssssssssssssssse 23
DEVICe Array EXAMPIEScciiiiiiiiieiiieeiieiiriieeiiieieteeteeeeenennsesssssssssssssssssssssesssssssnnssssssssssssssssssssannansnssssssss 23
Device-Channels and Device-Channel Arrays.....cccccceereeecereeeccrenecereneeneesesrenssssensessensnns 24
DEVICE-LEVEI ArTayS ... cceeeiiieeiiieecireecereeeereenetrneeesrensessensssenssssensssssnsssssnsssssanssssenssssennes 24
SUDFOULINES ...ttt s seeeeseesesensssnssassssnssssnsssnssssnsssenss 20
OVEIVIEW ..uiieeiiiiiineeiiiiieaeietiieeeeietieaaeessttanssssstressssssstessssssstesssssssssessssssssssnssssssssanssssssennss 26
DEFINE_CALL SUDIOULINES....ciiiiiurtiiiiiinettiiiinnttnisesssasesssssssansessesssssnsesssssssnssssssssssnssessssssssssesssssesssnnns 26
SYSTEM_CALL SUDFOULINES.....cceeiiiieieiiiiiiiitnnttee e sese st s e s s e e s e ssan e s e s s sssssssssssssessesssssssssans 26
FUNCLiON SUBFOULINES ...t e s s e s e anaa e 26
CalliNg PAr@meters ... ciiieeeeeieeieeeneeeeteenneneeeeeeenssesessesanssesssennsssssssesssssssssssnssssessssnssssssessnnsssessnnssssessnnn 27
SUDrouting KEYWOIrdSccceuiiieeiiieeiiieeeereeeereeeeereneesrennesrensssrensessenssssenssssenssssensssssnssssenns 28
CALL eeeeeetastseetast et et A AR e s s A AR AR e R £ AR E AR E AR e R e AR E AR E Rt E A e e s et e et anees 28
DEFINE_CALL .oceueuteeereuriesssensessssessesssssssessssssstsssssssessessssessessssssstasssssssssssssssssssssssassssssesssssssnssssssens ... 28

SYSTEM _CALL...eceueuiererenriecssensesessensessssessessssesstsssssssenstssssensessssesstssssssstsssssastsssssastssssssstustsssessssstsssssstssssssstusssssstustsssesstassesaseans 28

Language Reference Guide - NetLinx Programming 3

Table of Contents

(0€0] ¢ o] o 1| (=T gl 0 T1 =Tt £ V7=

OVEIVIBW aeuuenenieerieeeerereeeerecsesessssessssssessssessssssesssnse 29

#END_IF..........
223 L 0151 o 1 1 0 RPN RN
#IF_NOT_DEFINED..........ccevreerrinnnnneeernncnnnnnnee
#INCLUDE

Array KE@YWOIAS ...ccceeiiieniiiinniiiieniiieeiiiieesisiensssiessssssssssnsssssssssssssssssssssssssssssssssss 30

OVEIVIEW ueeururneenieerererestesteseesssssssssssssassessessssssssssssssssesssssssssesssssssssasssssessssssssssnssassassossenes 30

MUIti-DIiMENSIONAI AFTQYSciiiieeiiiiiineiieeiiteneieiiieenessietieenssssessssnnsssesssennessssssssnsssssssssnsssssssssnnsssssnnnssssss 31
Array KEYWOIASciiieieiiiiiiieiiiiieeneiieeieenesieetiennssesssennsssessssnsssssssennssssssssnssssssssnnsssssssnnssses 32
LENGTH_ARRAYcoueurimrreminessensinsssesstssssssesssssssesstssssssstssssssstssssesstssssssstsssessstssssssssssssssssssens

MAX_LENGTH_ARRAY
SET_LENGTH_ARRAY

AUdit KEYWOIASoeeeiiieiiiiiiiiiieiiiieieieeeieieneetrneetensssssnsssssnsssssnsssssnsssssnsssssnnses 33

AUDIT_NETLINX_GENERIC_EVENT.................... erereerer e e s 33
AUDIT_NETLINX_SESSION_EVENT eeeeeteaseetestieteatittaattttansestastestanttttasteteassetansetantstansstansettastestantseansstansisernnisennts 33

Authentication Keywordscccceveeeiieiieeiirecieeerencereerencesnsesesssescssnsesenseensees 34
VALIDATE_NETLINX_ACCOUNT.......ccoevtrirrnirinnennnnne

VALIDATE_NETLINX_ACCOUNT_WITH_PERMISSION
BUuffer KEYWOIAScooeiiieiiiiciiecrreeccrteeccreeecrtneecsseneeesensessnnsessnnsssensessnnsesses 3D

CLEAR_BUFFER............uuuerrrerirreneneeencncnennneeee,
CREATE_BUFFER
CREATE_MULTI_BUFFER

GET_BUFFER_CHAR..........ccouuueemererenerereneeeneeennnens
GET_BUFFER_STRING
GET_MULTI_BUFFER_STRING
Channel KEYWOIdSc.ccieiiieiiieiiiiiiiiiieiieeicreecieenctensensesensssnsssensssassssnssssnscsnes 3 7
OFF .. 37
ON vevenenes 37
TOTAL _OFF....citimimiinitinisncnississssissssssse st st s s b b s b s b bR SR bR bR b b bR bbb b0 37
(04 [Yod @ 1 F-To T- To [=T gl (CE1A", o] =S 00ORRPPORRRRRR: 1 - |
CLKMGR_SET_DAYLIGHTSAVINGS _OFFSET ...ccuuututieieieeeiemeneneieueneeeeeeeteeeeeeeeseeessessssstseetetetetststststststssssststssssssssssssssssssssssssssssssns 38
CLKMGR_DELETE_USERDEFINED_TIMESERVERccccuuttmtttmimtiieteireeieeeeeteteeeeeeeeeeeteteeeeeteteteeetememetemememeeemememeeessssssssesees 38
CLKMGR_GET_ACTIVE_TIMESERVER
CLKMGR_GET_DAYLIGHTSAVINGS _OFFSET.....cuueuuueieiuueueueeeneeeeeneeeeeeseaeseseaesesssssesesssssssssssssssss s s s s ssssssssssssssssssssssssssssssssssses 38
CLKMGR_GET_END_DAYLIGHTSAVINGS _RULEccccoutttitiiiiiiiiteteenieteieteeeteeeteeeteeeteeetetetereeetememetemememeeemememeeessssssssesees 38
CLKMGR_GET_RESYNC_PERIODccuuuuuuuuuuuuununueeeeeeeeeeeeeeeeeieeeteseeeeseseessesmses s s s s sttt ssssssssssssssssssssssssssssssssses 38
CLKMGR_GET_START_DAYLIGHTSAVINGS_RULE 38
CLKMGR_GET_TIMESERVERSccccevvteeeeeeneee
CLKMGR_GET_TIMEZONEuuutiiiiiiiiiunteeiiiiiiinteeeiiiiiiseeeeeseiisssssseeessessssssssssssssssssssesssssssssssesssessssssssssssesssssssssssesssssssssssenssssssnns
CLKMGR_IS_DAYLIGHTSAVINGS_ON
CLKMGR_IS_NETWORK_SOURCEDcccuuuueueueuenennneneeeeeeeeeeeeeeeseseeesesesesesesssssssessssssssssssssssssssssssssssssssssssssses

CLKMGR_SET_ACTIVE_TIMESERVER
CLKMGR_SET_CLK_SOURCE

CLKMGR_SET_DAYLIGHTSAVINGS_MODE.........

CLKMGR_SET_DAYLIGHTSAVINGS_OFFSETccococitiiiiiiiiiuieininteiiniiiiinieissneeesssnsesssnsesssssessssssessssnsssssssessssssssssssssesssssnssssssesans 39
CLKMGR_SET_END_DAYLIGHTSAVINGS_RULEeetiiieiieeeteecetentte s seessssssssse s s ssnssesssaessssss s s s ssnasessnsassssnsssnnns 39
CLKMGR_SET_RESYNC _PERIODcuuuumiiiiiiiiiiniiieinienenieenisisaneeeeessssasssssessssssssssessssssssssssessessssssssssssssssnans 39
CLKMGR_SET_START_DAYLIGHTSAVINGS_RULEccoiiiiiiiitiiinnniiiitieiisnteesnneessnsesssseesssnnesessnsesssssessssnesssssssessssssssnsesens 39
CLKMGR_SET_TIMEZONE........cuutiiiiiiiieiiiteiiiciiieitinscssneieeessssasseeeesesssssssaseses s sassaeessssssssseeesessssssssssseeeesssssssssanessssssssnenesessssns 39

Language Reference Guide - NetLinx Programming 4

Table of Contents

Combine & Uncombine Keywordsccccceeieeeiiiieiiieeeicineeicneeeccnnncenneesceneneeene 40

OVEIVIEW ..uiieiiiiiiiineeiiiiieaeiitiieeeiettesaeesstteanesssstrsasssssssensssssstesssssssssessssssssensssssssssnsssssssanes 40
Combining and Un-Combining DEVICES.......ccciiiteeiiiiiieneiiiiienneieeneennieeisennnsesseensssssssenns 40
COMDBINING DEVICES ...ceeeeieiieiieiiieeieennnieeeteeneseeeeeennseseesesansssesssssnsssssssssnsssssssesnssssssssssssssssesssnssssssnnssnsesssnn 40
UN-COMDBINING DEVICESuciiiiiiiiiiiiiieierrsesseess e ee e teaaae e s ssssses e st e s s e s s s s annsnssssssssssssssssnnnnssssssssns 41
Combining and Un-Combining LEVEIScceueiiiiieiiiiiiiiiiiieeeccentenneccnseennecessennssssssenns 42
COMDBINING LEVEIS....cceeieceiiieeieeieeteteneceeteenneeeettennsnsessenassesessesnsssssssssnsssssssssnnssssssssnnssssssessnssssessnnssssssanen 42
UN-COMDBINING LEVEIS ...ttt s s ee s s s s e s s s s snna e s s s s s s ss annansssssnsans 42
Combining and Un-Combining Channels.........cccuuiiiiiieiiiiiiiniiiiireecccnneeneccesneeessesnenns 43
ComMbINING CRANNEIS...... e ccerrecceereeteeeeeeeteeeeeeeeennsneesesenssssssessnassssssesnassssssessnsssassessnnssnseseenn 43
8T a R¥adeT 4] o 71T e J04 0 T= T T4 U= F- 3 43
COMBINE & UNCOMBINE K@YWOIAScccceeueiiiiienniieiienneiieiienensceesennnssesssensssessssnssssssaens 46
COMBINE_CHANNELSccurvureeeeearessesssssssssssssssssssssssssesssssssssssssessssssssssssssssssssassssssssssesssssessssssssssees 46
COMBINE_DEVICES

COMBINE_LEVELS.............ccceuuueee
DEFINE_COMBINE.........cceetriiiirnnrneeeriscnnenneennen.
DEFINE_CONNECT_LEVEL
UNCOMBINE_CHANNELS.ccceririinnnnnnennnn.
UNCOMBINE_DEVICES...............
UNCOMBINE_LEVELS

(0€0] 1] o1 [=] gl (32" o] ([« £- SRR £ - |

0 - I =3 N 48

B S 1 I8 N 48
7 I N 48

B 1 N 48

B Y | N 48
L I 1 | =N 48
Conditional & Loop KeYyWOrdsccceereeiirencrencrencreencnencrnncrenernneesnscrencesnsenenss 49
[0 17T VT 1T RN 49
(000] o] [1 0] 4 F-1 £-3 0PSRN 49
IF...ELSE ..ooeeueeeeeeeeseeseseeeseesesessessesessesseseesansessessesensessessesensessessesensessessesensensessesesensessessessesensensessesensn 49
SELECT...ACTIVE ...cveeveueeueereteteseesessesessesessessessesessessessesassessessssesessessesessensessesesessessesessensessansesessssensen 49
SWITCH...CASE Statements.....cccuiiiiiiiiiiiiiiiiiriiiriiniirre s reesr e sreess s ae e s sssssssaesssssessssssssnnssnes 50

1o T o 1N 51
FOR LOOPS «icuuiieneiiieneiiiennierensierenessiensssrssssorsasssssssssssasssssasssssosssssossssssssssssnsssssssssssnsssssnssssassssssssessnsssssnnsss 51
WHILE LOOPS .euuuiieuiiiiiniiiiieiiieeiiieniitenesieneeteesssreaesstesesstrasssssssssssssssssssssssssssssasssssanssssessssonsssssnsssssnnssnes 51
LONG_WHILE Statements.....cccciiieeiiiiiiiiiiiciiiiiieeiiieeetieesettensestenssssesssssssssssasssssenssssenssssanssssansssnsssssnsnns 51
Conditional and LOOP KEYWOIAS......ccuuuiiiiiieiiiiiiniciiiiienecceeneenesecessennsseessesnsssssssssnssssssaens 52
BREAK ...ooiiiiiieiiiiiititeeieiiiiieeeuesiiiitttessesessieteessssssssssterssssssssstesesssssssssessnssssssstessnsssssssssssnnnsssss 52
023 I PR 52

ELSE ..eiiiiiiiietiiiiitiineneeieiiietensessoseieressssssssssrenssssssssssssssssssssssssssssssssssssssnsssssssssssnssssssssssssssssssssssssssssssssstesssssssssstennnsssssssssssnnnsssns 52

FOR . ceeiiiitiieeiiiiniireeeieettereaaetsestereaasssessserenssssssssstsssnsssssssssssssssssssstesssssssssssersnssssssssesssssssssssssesssssssssstssssssssssstsnsnsssssssssssnnnsssss 52
PR 52

IF.ELSE. ... eeeeeiiiiiiieneiiiiiteeaessiitttenasssssssssesasssssssssesesssasssssssssssssssssssssssessssssssssssnsnsssssssssssnnssssss 52

INCLUDE ... cieitiiiiiiieenetiiiitteeaesiisitteeassesssstteesssssssssteresssessssssssssssnsnsssssssssssnnnsssss 52
SELECT...ACTIVEuiiiiiiiiiiiiiiiiiiiiiiisisse 52
SWITCH...CASE......cuuuiiiiiiiieneiiiiiiieeneeiiitttetsssesssstsetesssssssssstsssssssssssssssssssssssssssssssssssssstsssssssssstesssnsssssss 53

WHILEceeeiiiiiiiiiieciiinteeeee e sseeterenee e sese s s aasesesssssseaanssssssstenssssssssssersnssssssssstssssssssssssssasssssssssssnsssssssstersnsssssssssrensnsssssssssesnnnsssss 53
MEDIUM_WHILE.....ccituiiiiiiiiiiiiiiiiititiiiititteeseiieieteessssessssteeesssessssttessssessesssssssssssssssstesssssestesssssssssstsssessssssssssssssssssssssssssnnssnses 53
LONG_WHILEcccotvrrueeiiiriinnnnecssnnnennnesssesnnnenes ... 53

FALSE Eeeeeeeeseseeereeana sttt tetana,, e teteaaaa ettt e aaaaaee s e e aaaaeL ettt e aaaL ettt e aaaLLee et e nnLeeeeteaanLeeettetanastrsstetennnsteisseterennnenens 53

Language Reference Guide - NetLinx Programming 5

Table of Contents

LI J 53
Data Event KeYWOrdSccccieeiiieiieeiiieireecreeccrecrencrnnesensesesssnsessnscsenssensessnseses D4
AWAKEcoeiiiiiiiiieneeiiitiiteneeseiitetensssssssssressstssssssssssssessssssssssssssssssssssssssnsssssssssssssnssssssss 54
COMMAND.....ccuuiiiiiiiitieieiititeteueesiieteeeaessssetraensssssssstersnssssssssersssssssssssrsssssssssssssssssssssssstenssssssssssssssssssssssssssssssssssrsnsssssssssssssnnses 54
(0 X 0 PN 54
ONERRORcoiiiiiiiiuneiiiiiireenesiiieiresaesesssetsessnsssssssssssssnssssssss 54
OFFLINEcoeeiiiiiiiieeeiiiitieeneiiiitieeeeseiseeteransssssssssssasssesssssssssssssssssssssssssssssssssssssnssssssssensssnsssssses 54
[0 N 54
REPEAT ..iiiiiiieiiiiiiiieieneieiiieteeenesesenstsssnssssssstsssnssssssssssssnsssanssssssssssssssssssssssssnsssssssssssnssssssssssssnnnses 54
STANDBY ...ttt rreeueieietreeaessesesteresssssesstersssssssssssressnssssssstsssssssssssttensssssssssesssssssssssesssssssssstessnssssssssessssnsssssses 54
Data Types and Conversion KEYWOrdsScccceeeeieeieencieencrencceenceennceencsensesenneees DD
L0 1= T 55
INEFINSIC DAta TYPES ciieeriiieniiiieiiieniiieneieieneieteneseteasssssesssssasssssessssssssssssnsssssssssssnsssssnssssans 55
Intrinsic Data Type KEYWOIrdScccceeiiiiiiieeiiiiiiinniiiiiieneeeeinenneecssennsssessssssssssssssnssssssssnne 55
CHAR......cceevvvrercirrnnnnne
WIDECHAR.......cccevvvuuenecennns
INTEGER
SINTEGER
LONG
SLONG
STructured Data TYPES .ccuuiiiiieeiiiiiiiieiiiiiinniitieeneiisireasssssresssssssssssssssssssnssssssssssssssssssness 56
DEV .eeiiiiiitieneiiiiiiiteneesieesterensssssssteressssssssssressssssssssssssasssssssssssssssssssstsssssssssssssssnssssssssssssssssssssssesssssssssstessnssssssstennnsssssssssssnnnsssns 56
DEVECHANcoetiiiitiittiiiitterentieetitteaseeesstetesssssesssstteessssssssstesssssssssstesssssssssssesssssssssssstesssssssssssssssssssssssesssssssssstessnsssssssssssnnsssses 56
DEVLEV eeeeeeeeeeeeteeaa ittt tetaaaeeeteteaaaL et ettt e e aaL ettt et aNLLL e et et e abaL ettt e e aaRLLeee et e aNLLeeetteeaRLLL ettt etaabLbeeseetearnbteeeeseeennrerens 56
Combining and Uncombining Device/Channel Setscccciiiiiiiiiiieeecrrrrcrcccieeeeseeeeseeeeeeeesensssssennnns 56
FLO AT cciiiiittueeiiitieteneesieisierensssssssssrensssssssssresssssssssssssssssssssssssssnssssssssessnsssssssssssnssssssssssssssssssssssssssssssssssessssssssssssnsnsssssssssssnnnsssss 56
010 L = 0 PR 56
TYPE CONVEISION...c.uiiieeiiiineiiieeiiiteeitieneiteesssrenssstessssssssssssssssssssssssnsssssssssssssssssssssssanssssane 57
TYPE CONVEISION RUIES ...ttt ceeettenee s eess s e s et s e s s e s e s anansssessssssssssssesssssssensnsssssssssssnans 57
CoNVErSioN KEYWOIAS...ccc.iiiiiiiuiiiiiienniiiiiieneiiiiieeneiiniiessssssisessssssssssssssssssssssssssssnssssssss 57
AT O .. iiriiiiiiiiiiiteneeieieietenasssessserensssssssssresssssssssssssssssssssssssssnsssssssssssssssssssssssnssssssssstssssssssssssessssssssssssssssssssssssssnsssssssssssssnssssssns 57
ATOF oitiiiiiiiiiitittnieeetereteeseteteaaaesesetesasesesesesteessssssssstersssssssssseresssssssssstsssssssssssttessssssssstesssssssssstesssssssssstersnssssssstersssnsnssssns 57
ATOL eeeeeeesertesiitteatittaatittaatttaaseteattttateseasteseaststaststansstassseantistansistanstsennsisens 58
CH_TO_WCceiiiiiiiiieeiiiiiiteneneieseietenssesssssressssssssssstessssssssssssssnsssssssssssnsssssssssssnssssssssssssssssssssssssssssssssssessssssssssssnsnsssssssssssnnssssss 58
FTOA
HEXTOI
ITOA
FORMATccvviiiirrrrnnnnnnns
ITOHEX
RAW_BE
RAW_LE
DEFINE K@YWOIS ...c.ceeeieeirenieeenerencranerenncrenernncrensesassssnsesassssnsessnsessssssnsesanseses O0
OVEIVIEW ...ceiiieiiieeiieeiieeetenereeeteeereseressesnsesassssssssassssnsssassssnsssassssssssnssssnsssnssssnsssnsssansssnsenns
DEFINE_CALLucueeueteueceeeeeteesteseessessssesetssessessssssesansesessesessnsessnsesensasssssesensesensesessesesenssnsesenssesessesenes
DEFINE_FUNCTIONccveeteeeueerereeeesessessesessessesessesessessessesessessessessssesessessssesessessesesessesensensessessensesessens
DEFINE_CONSTANTcoueetitierterteeesessesteessesseesesassessessessesessensessesessensessesessensessssessensessesessensessessesessssens
DEFINE K@YWOIAS ...ccuuiiieeiiieeiiieneiereeneereneeetrensesrnsssssensessensssssnsssssnsssssnsssssnnssssenssssensssssnnes

DEFINE_CALL
DEFINE_COMBINE
DEFINE_CONNECT_LEVEL
DEFINE_CONSTANT
DEFINE_DEVICE
DEFINE_EVENT
DEFINE_FUNCTION

Language Reference Guide - NetLinx Programming 6

Table of Contents

DEFINE_LATCHING
DEFINE_MODULE
DEFINE_MUTUALLY_EXCLUSIVEceuveeenee.
DEFINE_PROGRAM
DEFINE_START
DEFINE_TOGGLING
DEFINE_TYPE..

DEFINE_MUTUALLY_EXCLUSIVE and Variables

DEFINE_VARIABLEcooiiiiitieiiiectenneeensenneesnssesenee s sssesssesssssssasssasssssssnsnnannens
PROGRAM_NAME
RETURN ...ttt ttee e see et e s s s s e e e e e s e s s s e e s e e e s e s s s s e e s e s e s s s saaaesessessssssasasessssssnntesesssssssssasesessssssaaessassnsns

DEVICE_ID
DEVICE_ID_STRING.......ccccovriimunrneririscnnennnennnen.
DEVICE_INFO..
DEVICE_STANDBY
DEVICE_WAKE
DYNAMIC_APPLICATION_DEVICE
MASTER_SLOT ..
PUSH_DEVICE.cccovumrrirircnennneeencccnneneeeeean,
RELEASE_DEVICE
PUSH_DEVCHANmiiiiiienineeinccnnenneeene,
RELEASE_DEVCHAN
REBOOTuuuiiiciiiiiiinencneessniensnenessnneesssnesessssesssssessnnns
SEND_COMMAND.cccovmmrrerinicnnnneeennscnnannnees
SYSTEM_NUMBER............uuerreeirrnreeeeeccnenenens

Encode / Decode KEYWOIdSccceceeeieenerienniieeniereeneceeenereeneessensceensseessssessensenees OO

Overview - Encoding and Decoding Binary and XML........cccieecciiiireenciiiiieennccesneeneccceenens. 66

Encode / Decode KeYWOIS.....ccccecereeniiienerienereennertenneerensessenseessnsesssnseessnsesssassessnssessnnes 70

STRING_TO_VARIABLE (VARIABLE DECODE)cccocereumersunennensnncssnnsssnessancssnesnnes
VARIABLE_TO_STRING (VARIABLE ENCODE).......c.cocevurruennesuessunssesnessesenssessnenne
LENGTH_VARIABLE_TO_STRING (VARIABLE Encode)
LENGTH_VARIABLE_TO_XMLccutiiiiiiiiinniiiiiiinineeeeiicsnennneeesssssnnneeeesssssssnssesesns
VARIABLE_TO_XML
XML_TO_VARIABLE

Event Handler KEYWOrdScccieiieeiiieiiieiiieiiencieecieecnencseescsnscsesscssssssnscssnscses 14

OVEIVIBW auueenineereeeererneeerecsesessssessssessssssesssssssssssssssssssssssesssssssssssssssssssssssssssssssssssessesssenee 74

(=20 o T Y= o | TN 74
L0 0T=T 014 L= I YT 41 PP 75
[0 F 1 T = o | = 76
LI I YT o | 78
LORT T3 o T 4 T8 7= o | =N 79
oV gL =T = 1= = = 79

BUTTON_EVENT «.coverctneenceeesseesesssssassssssssssssssssssssssssssssasssssssssssssssssssnssssssssssnsses
CHANNEL_EVENT c...eoeereeemeeeeeeenesessssesssssenens

DATA_EVENT «.cooiereeeeeeesessesesesssssesssssssssssssssssnssssssnns
LEVEL_EVENT ..
REBUILD_EVENT() cvvuvereeeemseeneemesssessesesssssssans

File Operation KeyWordsccccciieeiiieiiieiiieiiincieeniieeiiencieesesncneecsessssnsesssscsss 84

FILE_CLOSE
FILE_COPY
FILE_CREATEDIR
FILE_DELETE...
FILE _DIR ...ooiiiieiiiiinineetiicitetteeeesesiantaeeeeesssssneessessssssnssesesssssssssessssssssssssssssssssssnsasessssssssssnsasesssssssssasssessssssassssessssssnnsasesssssans

Language Reference Guide - NetLinx Programming 7

Table of Contents

FILE_GETDIR

FILE_OPEN
FILE_READ
FILE_READ_LINE . .
FILE_REMOVEDIR........ccuuututuemeneneneeeneeeneeeeeeeeeeeeeseseeeseeeseeesteesestesssssssssesssssssssesssssssssssssesesesesesessnsnsnsnsnnns 86
FILE_RENADMEooouuutiiitiieietneeeeeeeeeeeeeaeeeeeesseeesesssesesssnsssnsnnes 86
FILE_SEEKuuuuueeeeenenenenenenenenenenenenenenesssssesssssssssssssmeseresssesssenes .
I S o 0 N 87
L I 1 I RN 87
L 0 I Y 87
(€7 =1 R (34 o]« [RORPURPPORRRRR - 1 - |
GET_AVAILABLE_FLASH_DISK_SPACEccuuuuuuuuueeeeeieeeneeeeeeeieeeeeesesesesssssesssnsns 88
GET_DNS_LIST .- 88
GET_IP_ADDRESSccceuvvememememeneneneneeneneeeeenenenes 88
GET_LAST 88
GET_MAX_FLASH_DISK_SPACE......ccccccummmmmemrmnnenneeneeeneeeeeeeeeeeeeeeeeneeenenees 88
GET_PULSE_TIME 88
GET_SERIAL_NUMBER............ccccceeveveeeee. 88
GET_SYSTEM_NUMBER 88
GET_TIMER 88
GET_UNIQUE_ID .. 89
GET_URL_LIST ..ccuuemeeeneneneneneneneneeeneneneeeneeeneeeeenees ... 89

GET_URL_LIST Flags Member Bit Fields

IP K@YWOIAScceiiniiieiiiieirenereneerencrencrneesenscrnssssnsessnsesassssnsessnsssnnsssnsesnssssnsssens D 1
Overview - IP COmMmMUNICAtiONccivieeeiiiiiieniiiiiieenieniieeeienieeneesssnnennessssssensssssssssnssssesses 91
Client Programmingc..cccceecereeeiireneireenceneneereesessnnsssesssssesssssensssssnsssssnsssssnsssssnssessnnsenes 9 1

INitiating @ CONVErSAtioNccceueiiiiiieieiiiiiieiicertrneieetreeneeeetreenesssestesnnsssssssennessssssennsssssssssnssssssnsssssssaans 91
Terminating @ CONVErSatioN.......cccciiiiiiiiiiiiiiieniiieiieieiisiitesseisstitesessnsess 91
£T =1 ¢ Lo [T T [c £ U 91
RECEIVING @ ..ceeeiiiiiiiieiirccrrrerr e s re e eesrreneessssssennsssssssssnsssssssaanssssssssenssssssennnssssssannnnssnns 92
Server Programming ...ccccicecciieeeiiieeeiiieneiiieesioisesssisasssssssssssassssssssssssssssssssssssssssssssssssnssssans 2
Listening for ClieNt reqUESESccuiiiiiiiiiiiicerrrrer et e s enenneee e e e e e s eessssssss s sssssnnnnnnenseneensnsnnas 92
[\ [OTN o] (=0 od [T=T | A of0] o] 4 T=Ted '] o - OO OR PPN 93
ClOSING @ 10CAI POIt....ciiiiiiiiiiieieiiieeirrirrreeeieieteteereeeeenansnnsssssssssssssssasssssesesssnnsnsssssssssssssssssssnnnnnnssssssssssss 93
Connection-0Oriented NOLIfICAtIONScoivviiiiiiiiiiiirrr e anne 93
RECEIVING @ ..ceeeiiiiiiiciirrcccrrres e rr e eessrenee s s s eennssssssessnsssssseesnsssssssssnesssssennnsssssssnnnnssnns 93
SENAING AALA.....cciiiiiiiiiiiiiieiirrreiriieeeettittteeeeeeennnessessssssssssssssesssasseeesssanssssssssssssssssssssssessasasnsnnnnssssssssssss 93
Receiving Data With UDP...... .. ieieeiiciceiieeieieeereeneeeeeeeeennseeeesenansseesseennssesssssnssssssssssnssssesssnnnsssesnnnnnnnne 93
LT T3 94
EX@MPIE IP COUO...cuuuiiiiiiiiiiiiieiieeeeneenneeeisiiessssessteeseeessnssnsssssssssssssssssssssssassssssssssssssssssssssssssssnnnnansnssssssss 94

IP KEYWOIAS ...ooiiiineiiiiiiinnniiiiieneeiiiiiennssssiirensssssssenssssssssssssssssssnssssssssasssssssssnsssssssssssssssssancs O

ADD_URL_ENTRY
DELETE_URL_ENTRY
GET_DNS_LIST
GET_IP_ADDRESSccevreurrrinnrercnnenesnnennnnne
IP_BOUND_CLIENT_OPEN..........
IP_CLIENT_CLOSEuuuuiiriiiinnnnneeeeescnnnnnnenenen.
IP_CLIENT_OPEN......ccooomrerirrrinnencnneeecnnennnnnne
IP_MC_SERVER_OPEN............ccceverrruunneee
IP_SERVER_CLOSE
IP_SERVER_OPEN
IP_SET_OPTION.........cccuurreeenee.

Language Reference Guide - NetLinx Programming 8

Table of Contents

ADD_URL_ENTRY Flags Member Bit FIieldsccccceeiiiiimmiiiiiieniiiiiieneiceiiennesiesiieenesssssseanessssssssnsssssnns 100
SET _IP_ADDRESS.......cureuriesenrescssensesssensessssensesssssssessssssstssssssstssssssstssssssstsssssssesssssstustssssssstsssstssssssstssssssstsssssssenssesssenssessssane 100
SET_DNS_LIST ceuereueecureuseessensesessensasessensessssessassssesstsssstsstsssssssesssssstsssssssesssssssessssssstustsssstusssssstsssssstasssssstnsssssensssssenssessscane 100

GET_IP_ADDRESS Flags Member Bit Fieldsccuuiiiiemimiiiiiiiiiiiiriceenieescssseeennns e eeneeees 101

Level KEYWOrdSccieeiiiieiiiiiiiieiciieecnteeenrnecssenscssnnsessnsssssnnssssssssssnsssssnnses 102
~LEVSYNCONeoeuvereriurennaensesasesssssssesssssssesssssasessssssssasssssssasssssssasssssssasssssssssssssssassasssssssssssases 102
~LEVSYNCOFFcueecureueeceeusiessensesssensesssesstssssessessesssstasassssessesssstssesssstustessstastsssstustassnesstsssstsstssseustasssssstsssesstsssnesstasesssens 102
COMBINE_LEVELSeueueereeereesesessessssessesssssssessssssssssssssssssessssssssssssssssasssssssssssssssasssassenes 102
CREATE_LEVEL....utueueureeeensesssessesssessessssessesssssssessessssessessssesssssssesssssssssstssssssstssssssstasssesssssssssstssssssstasssssssasssssssasssesssasssssnss 102
DEFINE_CONNECT _LEVELuceucuueueuceemesssensensssessensessssensessssensessssesstssssesstssssssstassssssenstssssesstsssssesstnstsssssnsessssenstnssenstnsesessns 102
SEND_LEVEL ...ccvurureureeerensesessesssssssesssssssessessssssssees 102
SET_VIRTUAL _LEVEL COUNT w.ucuuiurierurenstsesessesssesstsssssssesssssssasssssssesssssssesssssssesssssssssssssssssssssssssstsssssasssssssnssssssenssssssnssassnsns 102

Listview KEYWOrdSccciieeiiiieiiieeiirinicnieciieeennenecnensssenssssnsssssssssssnsssssnses 103

LISTVIEW_ON_ROW_SELECT_EVENT
DATA_FEED
DATA_FIELD
DATA_RECORD....
WC_DATA_FEED......
WC_DATA_FIELD
WC_DATA_RECORD
DATA_CREATE_FEED
DATA_DELETE_FEED........cccooveeuuumerererniinnnnnnennn.
DATA_PUBLISH_FEED
DATA_GET_PUBLISHED_FEED
DATA_ADD_RECORD............
DATA_GET_EVENT_RECORD
_WC_DATA_CREATE_FEED
_WC_DATA_ADD_RECORD
_WC_DATA_GET_EVENT_RECORD

(o Te I8 =) 7A"\ Vo] '« £- 3PP I 0 -

SET_LOG_LEVEL ... ceieeiieiieiiteiieniteectenereeeteseeasesssesnsssnssssssssssssssssssasssasssssssssssssesssensssssssssssssssnsssnsssnsssnsesssssssssnsesssssnsenssesnssnnnns 108
(e = o T Y = Y 108
Y1 b G 0 L IS 108
[\ =1 o T 0 1 Lot o o] o 1= I 0 1)
EXP_VALUE ... ieiieiiteieteeeteeeteeteeetnectasstnssenssesssssssssssnsssnsssssesnsssnsesnsssnsssnssssssanssassssnssansansenns 109
LOG _VALUEceiteiteiienieenieeeieeeeeeeeessesssessssssssssssssssssssasssssssssssssssssssssssssssssesssnsesssesnsesnsssnsssnns 109
LOGTO _VALUE......cc it iieiieiieiiteiereeteeeeeeeestseetsestssstessresssssssssesssesssesssesssssssessssssssssssssssesssessssssssssesssssssssssnsssssssnsesnsssnsssnsssnnssnne 109
POWER_VALUE ... ieiitieteteeeeetectnctaetenetenctesssesssssssssssssesnsesssesnsesssessssssssssssssssasssssssssssssssnssssssssssnsssnsesnsesnsesnsssnsesnsesnnssnne 109

SQRT_VALUE
Module KEYWOIASceuiieeiieiiieiieicreereecreeeseneerenscsnssenscsessssnsessnsesessssnsesense 1 10

[\ =Y o D [Yo 1T 1 = 3P I I 0

DefiNiNg @ MOAUIEee et ceceees e ee e e e e e e e eeeeseesaessssssssssssesssssesseeesssnnnnssnssssssssaeeseessnnnnnnnn 110
USiNg @ MOdUIE iN @ Programi..... ..o iceeeecciiieeienceineeeeneeeteeenssceseesnssesssesnsssssesesnssssessssnnsssssessnnsssesnnnnnns 115

(1 [oTe 0] [= 38 =3 AT Lo T o £ I I -1
DEFINE_MODULE........cuesustesterssssassasssssassasssssssssssssssssssssssssssassassasssssassssssssssssasssssassessasssssassasssssassassassassassassassanssnsssssessessansansas 116
DUET_MEM_SIZE_GETcueturuurreressesressessessessesssssssssssssssssssssssssssessessessessssssssssssssssssssssssssssasssssssssssssssssasssssssssssssssssssassassas 116
DUET_MEM_SIZE_SET...c.cvurvuuruseraressessessessessessessesssssessssssssssssssssssessesssssssssssssssssssssssesssasssssssssssses 116
MODULE_NAMEcueueususeesssssssssssssasssssassasssssassssssssssssssesssssasssssassssssssasssssasssssassssssestassasssssesssssessassassassassansssssssessessassassas 116

Operator KEYWOrdSccccieeiiieiiieeiiieiiieiieciencreeiernesiencsnssssnsessnsssnsessnsssnnsess 117

OVEIVIBW ..cceiiiieeiiieeeiirenecteneereneetransessnsssssanssssessssssnsssssnsssssnsssssnsssssasssssansssssnssssanssssannas 117
ArItNMELIC OPEratOrScceeeeeereeecriiieiiiietiiiiteeeereeeneeessssssssssessssaeesesssssnnnsssssssssssssssssssssasessnnnnssssssssasssans 117
ReElatioNal OPEIAtOrS...ccuuu i iieiieeiceiireetceeerteteneeeeeenaneeeteeensssseesennssessssssnnssessessnsssessssssansnsassassnsesssnnnnnns 117
LOGICAl OPEIatorS. ... cciiiieeiieiiiieneiiiiieeeeiiertrennesiestrennesssetsesnssssessssnssssssssennessssssssnsssssssssnnsssssnsssssssssnnnsnss 117

Language Reference Guide - NetLinx Programming 9

Table of Contents

BitWiS@ OPEIAtOrSciiiiieiiiiiiieneiiiiiteneiietitennesiestteenesesseesnessssssssnsssssssssnnssssssssnnessssssssnnssssssnnssssssssnnnnss 117
ASSIGNMENT OPEIALOIS ...ccuuueeeeiiiciiiiiiiiitieeeeteett e s e et e e e e e e s asaa e s s s s e s s s e s e s e e e e e easssanssssssssnnneeees 117
(071 = 1 o] gl =T o= 1= o o= 118
(0] o T=1=1 o] gl (=3 TA"\ Vo]« £SO R 118
AND (&&) ettt sttt s st 118
BAND (&)..cuveeereusenresessenseessensesssessessssensassssessessssessessssssstssesssstustssssesstsssssstesssssstsssssssenssssasens 118
BINOT (™) tueueecereusencesturesesseusenesstasencsssasesssssssenssstasessssesstasssssstasssesstassnesstassnssstasssstasssssnssssnens 118
BOR (]) cevereureeerensenseseusenssssssessesssesssssssessssssesssssssessesssssssesseassssas 118
BXOR () cocureureeesensesessensesssensessssensessssssstsssssssesssssssenstssssesstssssssstssssssstssssssstassssssasssessensessasens 118
LSHIFT cecvueueertresrsasessssasssssssssssssssstssssssssassssssssssasssssssessssssessssasassessssassessasassssassssesssssssssases 118
MOD (0) «.vreeererrenseseesensessseusessssessesssssssesssssssesssssssessessssssssssssasssssssssssssssssssassssssassssssesssssasens 118
NOT (1) tevureueeemenreeseseusesessensessssessessssssesssssssesssssssessesssssssessssssstssssssesstesssenstssssessssssssssensassas 118

OR ([]) ceeeeeremeeseeensensseusensesessenssssssensssssseussssaseussessntassassstassssssaseassessssassssasenssesasenessasenssssases 118
RSHIFT 118
XOR (A7) 118
POrt KEYWOIdScceuiiieeiiiieeiiiiieiiiieeiiiieeenienetineessesssssasssssnsssssnsssssasssssnsssssncses 119
DYNAMIC_POLLED_PORTcvovueurieenreseessssesssssssssssassses 119
FIRST _LOCAL _PORT....cucvevueureereessessssessessssssessssssssssessassssssssssssnes 119
STATIC_PORT _BINDING......curtrureuresesensesssessesssessesssssssessssssstsssssssesssssssesstsssesssssssssssassnsns 119
Push and Release KeEYWOrdsccoiveeiiiiieeniiniiennnisninenssnnnenssssnnsescsssssensesees 120
DO_PUSH.....crueueuruseuresesseusisssssstassssstasssssstssssssstssssssstasssssssasssssstasssesssssssssssssssssssssssssesss ssnsens 120
DO_PUSH_TIMEDcccuruieurerenessessssssessssssessses 120
DO_RELEASE ... 120
MIN_TO 120
PUSH 120
PUSH_CHANNEL.covuueerreeeeseesesessessssessessssessesssssssessessssssssssssssssssssssssssassnes 120
PUSH_DEVCHAN w....cvueuireenisesessesssesstsssesstsssssssesstssseustssssessessssesstsssstustssssssstssssssstssssssstassssustsssssustsssssustssssssstsssessssstsssnas 120
PUSH_DEVICEcecuueueurireresesesessesstssses 120
RELEASE 120
RELEASE_CHANNELcucuueuirerensicssenstsssessasessessesstsssstasassssessessssessssssstssssssstasssssstsstssssssstssssssstsssssustssssssstssssesstssssssssstsssnes 120
RELEASE_DEVCHANcovueurirtsusesssssstssssssssssesssssssssssssssssssssssssssssesssssstsssessstesssssstasssssasssssssasessessasessessassssessassssssassssassnes 120
RELEASE_DEVICEvucurteeueusessessesssessessssessesssssssesssasssssssasssssssssssssssessssssssssssssssssssssssssssnss 120
TOeeureereureenensessenens 121

SET _DNS _LIST ceeeeeeieiiiiiitieteieiiittttteeeessanteeetessssnseseeesesssastaesesesssssssessessssssssssssssssssssassesessssssssssssssssssassasssesssssnnasesesssssnnnaness 122
SET_IP_ADDRESS.......coottiiiiiiiiiiitieiceenieee s casseeeces s asass e eesse s s s s e e e s s s s s s s e e s s s s s s e e e se s ssssssaaeeesssssssssaeissssssssnnensssssnnnnnnns 122
SET_LENGTH_ARRAY ..eeeecccctteitienncentieee s ssassses e ssasassseesss s sasss e e sesssssasasesssssssssasssssssssssssssesessssssssseessssssssssnenesssssnnnnnnes 122
SET_LENGTH_STRING.......ccotiiiiiitetiitiiiiititeeieiinneeeeeesessantaeeesesssssnaessesssssssssnessssssssssasssesssssssssassssssssasssessessssnnssesesssssnnsaness 122
SET_OUTDOOR_TEMPERATUREcooitiiitinicninieinncetnte e asnses e sassss s e e s s sss s e s e se s ssnsnas e sessssssssssassssssssssssenesssssnnnannns 122
SET_PULSE_TIME........iiiiiiiteiiiinineenieesissceseeessssssssasseeessssssssssaesessssssssassessssssssssssssssssssssssesssssssasssnsssssssssnssenesssssnnannnes 122
PULSE. ...ttt eeccteneeee s aanee e se s e sasaese s s s sasassssessssssasasssssssssnsansssessssnnnansanesns 122
SET_SYSTEM_NUMBER ..ottt ceese e ass s e s e s as s s s st e s s s s s s e e e s e a s s e e s e s e s s basasaesessssssssaenessssssnannnss 122
SET_TIMER.....eeecc ettt nenee e sasas s e e s s s sa s s s e e se s s asa s s s se s s s snnsasssesssannnansanssass 122
SET_VIRTUAL_CHANNEL _COUNTcutiiiiiieiitiiinitencnteesnnecennesssaneesssnnessssnnesssssassssssessssnessssnsessssssnssssane 122
SET_VIRTUAL_LEVEL _COUNT ...cuuitiiiiiiinieiiiteinicnintecnnscsensseesssssassseessssssassssssesssssssssessssssssssseesssssssssssssessssssssssssensssssssnnaenes 122
SET_VIRTUAL _PORT_COUNTcuueiiiiiiiiiteiieeiinicenteee i cssasssesesssssasssessessssssssssesssssssssssssssssssssssssssssssssssssassssssssssssssssssssnnsnnnes 122

SMTP KEYWOISiieeiiiieiiiieiiireniireneitennieteneiesenssssensssssnsssssnsssssnsssssnsssssnsssees | 23

OVEIVIBW auiueenenineereeeieereeeerecsssesscsesessssessssesessssessssesesssesnsses 123

SMTP_SERVER_CONFIG_SET
SMTP_SERVER_CONFIG_GET
SMTP_SEND

StriNg KEYWOIAS ...cuieeieeiiieiiieiieeiirecreecteecrencrencsnsssnsesnnsssnssssnssssssssnsssnnses | 24

OVEIVIEW ...ceiieeeiieeieeeeteneteenereneenneranseascrassssnsesassssasssassesnsesassssnsesassesnsessssssnsesnssssnsesansssnne 124
1] o T =4 0] =137 1] 130T 124
L L e L=TR1 1 g 1o T TR 124

Language Reference Guide - NetLinx Programming 10

Table of Contents

STRING KE@YWOIASceeeeireenireenierennerennerennnesrnsnessasssssessessanssssensssssnsssssnsssssnsssssnnssnsnnnes 120

CHARD 125
CHARDM 125
COMPARE_STRING 125
FIND_STRINGccocuiiiinieiitieiitteiesnteessntesssanesesssaessssesesasesssssaessssassassasesasssassssssssesssssesssstessssssesssssessssssesssssesessaseessssessssnnes 125
LEFT_STRINGccoiiitiiiiiniitieeienncnneeieee i asees e asasssesesssssassaesesssssnssasssssssssanansesssssssnnnnns 125
LENGTH_STRINGouueiiiiiiiiiiittieieiiinetteteieseitneeeeesssnanaseeesesssasnsessesssssssstsesessssssssasssesssssssssssssssssssssassssssssssssessessssssnsesssssnss 126
LOWERL_STRINGcotiiiiiiiitiiiitteniinteesnteessanesesseesssstesesssssessssassssssesessnesessssessssssesssssessssseassssssesesssessssssesssssesessaseessssessssnnes 126
MAX_LENGTH_STRINGcccitiiiiiiiiiinnieteieiiineeissscsanteeesssssasasesesssssssasssesessssssssesesssssssssesssessessssssaesssssssssssessessssssnsansesssss 126
MID_STRINGcccetiiiirtiitiiiiiitttteeeiesnttetetesssstteeeeesessastsesesssssasssessessssssssteessssssssssasssssssssssstesssssssssssassssssssssssessessssssnsesesssnss 126
REDIRECT_STRINGcuutiiiiiiiiiitiieiteeistteiitseessaeesssssesessnesessnsessssssesssasesessssessssssesssssesssssaessssssesssssessssssesssssesessanesssssessssnnes 126
REMOVE_STRINGcuuutiiiiiiiiitiiieeeiictnnneeeiessateeeesssssssanssesessssasssesssssssssasesessssssssssesessssssssssssesssssssssssesssssssssssessessssssnsensssssss 126
RIGHT_STRINGueiiiiiiiiiiiiiiieiniteeseteessaressasees st e es s s es s ss e e s s s e s an s ee s s s e e s s st esssssesessssasssssnesessnesssssaessssnesesnneessanesssnnes 127
SEND_STRINGccoctiiiiiieitieieteeecteesstt e s sseeesse e s st e se s s e s s s e s s s s s e s e s s s esssasaesssssessasasssssssessssssesssasessssssessssssesssssesssssenannen 127
SET_LENGTH_STRING.......ccoiiiiiteiiieeiinetieteiencnenes s ssassseeesss s sassse s e sesssssasesessssssssssasesessssssssssesssssssssssassessssssssnenessssnnannnss 127
STRING ...ttt er e sasees s e s e e s sas s e s s ss s e s ss s e s s saeessssesssssnasssssaesssssassnns 127
STRING_TO_VARIABLEuutiiieieeiitiecnteeiceteecsstessste s sasesssaseessasessssasesssasaesssssesesssasessssesssssssesssssessssssessssssesssssasssssessnas 127
UPPER_STRING.......ccocttiiiiiiiiitiieeeiiisenieteeesssstnetesesssssanssesesssssssssesesessssssssaesesssssssssesssssssssssstenesssssssssesssssssssssnesessssssnsensssssss 127
VARIABLE_TO_STRINGcceioiiiiiiiieiinnieiinieieieneessteesssneeisssnsesssssesssssnesesssssessssessssssesssssessssssessssssessssssssssssessssssesssssasssssasssas 127

Structure KEYWOrdScc.cieeiieeiiieirceecreeereecreesennerennernscsenscsasssnsessnsesnsssensenes | 28

OVEIVIBW ueurueenenruererereererasserecsssessses 128

Example - Using Structures to Define a Database Tableccccceeiiieiiiiiiiiiiiieeeeerreecceeeeeeeeeeeeeeenes 128

(3 1] &= RS- =3 129
STRUCTURE KEYWOIASceeueieieenireenirtencreennestenseesensseseassessassessensssssnsssssnssssssssessanseseenss | 30
DEFINE _TYPE ... ieiiiiiteietieeeteecteectnectnecenesenesesesesssssssssesssssssesnsesssesssessssssssssssnsssssssnsesasssasesnsssnsssssesssenssensssnsssnsesnsesnsesnsesnsssnne 130

£ I 200 L o Y 130

3 20 o 1] 5 S 130
Terminal KEYWOrdSccuieeiiiieiiiiciieicrtecrecreecreneresesennesnsessnsessssesenessnsessnees 13 1
SSH_CLIENT _CLOSE ... ieeiieiieiiteieteietnieteteeetenscensesssctescsasssassssssssssssssssssssssssssssssssesssesssssnsssnsssnssnsssssssnsssnsssssssnsesssssssenssesnssnnnns 131

SSH_ CLIENT OPEN ... ituittiteiiteirenieenieenieeeeesssesseessessesssesssesssssssesssssssssssssssssssssssssssssssnssssssonsssnssenssns 131

Time and Date KEYWOIdSccceeieeiieiiieiienicreereecrencernncrensesnsesessssnssssnsesenseenss 1 32
8 1 50 T o I 0 T d S 132

[0 X o T od QS 132

DATE ..o ieieecitcttetteertetteeetenetesesasesnscsnsesssssnsssssssnssssssssssssssssssssssnsssnsesnsesnsesnsesnsesnsssnsesnsnnes 132
DATE _TO DAY ..ciiieiitiieiieieeereeereeerneesnetenssenssesssesssesssesssasssssssssssssssssessssssssssssssssssssanssssssanssnssans 132

DATE_TO _MONTH ...ceeiiiiiiiieitiieeitettetteettneteeetesssesssessesssssssensssssssssssssssnssssssssssssssessssssssssssssssssssssssssssssnsssssssnsesnsssnsssnsssnsssnne 132
DATE_TO_YEARceieuiieiieiteeteeteetetenneeescesscssscsssesasesssssssssssssssessssssssssssnsssnsesnsssnsssnsesssssnssssssassssssssssensssnsesnsssnsssnsesnsesnsesnnssnne 132

[2 N 132
DAY_OF_WEEK .. eetesetesieesieestessttastenrtenteanetenettaatartartartantaretanerateratenatenatenarenntennteanteaneeaernteaneanetanennetanetaneranetaserartennnnn 132

LDATE eeeteseeeseenseensetnsetnretnretnttntttnttanetanttanttntanttantenrtenreenreensetnretnresnrernsernsernnrnnernnes 132

B 11 | 133
TIME_TO _HOUR ..ctieiiieitiiiteiiteiteeiteeeteeereeesesesssesssessssssssssssesssenssssssesssasssssssssssssesssenssessssssssssssasssnsssssssnsssssssssssssesssssssenssennsennnns 133
TIME_TO_MINUTEcituiiiteiiteeeiiieeeieteeeetenssetesssesssssesssssessessesssssssssssssssssssssssssssnsssnsssssnssssennnes 133

TIME_TO _SECONDcuituiieiieiiieiereiteeteeeeeeettsestenstenstesstssssesssssssssssssssssessnssenssennnns 133

Timeline KEYWOIAScieeiieiiiiiieiiiicreicrecreecreeteneeneesssnsesenscssnsssnssssnsssncsess 1 34

OVEIVIBW .ceeiiiieeiiiieeeiireneeteeeereneetransessasssssanssssenssssensssssnsssssnsssssnsssssasssssanssssanssssanssssannns 134
Creating @ TIMEIINE. ..ottt eeeeeneee e esssssessssessessseesesnennssssssssssssssssssssnnnnnssssssssssns 134
TIMELINE EXQMPIE....ceeeieeiiiiiiiiieiiiiiiieeeneennensssesssnnnnsssssssssssssssans 136
TIMELINE IDS...c.ieuiiiuiiiiiieiiieitieiiieiiieienitaeiiaestaesisesirassrasstsessssssssssrasssssssassssssssasssasssssssssssssssasssasssnssses 138

TIMELINE_ACTIVE «..ccvuueueueueeseusessesssssesssssssssesssssessesssssesssssssssssssssssssssssssssssssssssssssesssssssssssssssssssssssesssssssssssssasssssssesssssessssassas 138
TIMELINE_CREATE ...couvvurvursuesunsuessrsssssssesssssasssssassassassassassssssessesssssasssssassassassassansassanssstasssssassesssssessassassassassansansanssssessassassas 139
TIMELINE_EVENT ..couvutureurserssssssssssssssssssssssasssssassasssssassssssnssessasssssesssssassassasssssassasssnsssssessessassessssssssassassassansansanssnssssssassansas 139
TIMELINE_GETvurtureeeuessessesessessessessesssssssssesssssessesssssesssssesssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssassssssssssssssssessssessssasses 139
TIMELINE_KILLvvuusteetessessessessassassassasssssssssessessessasssssassassassassanssnssnssessesssssessassassassansanssnssessnssssessessassassassassansasssnssessessassansas 139
TIMELINE_PAUSEcuvvurtursursursusssssssssssssssssasssssassasssssssssssssssessasssssassssssssassassassassasssnssssesssssassesssssssssssassassansansanssnssssssassassas 139
TIMELINE_RELOADuvuvuieensenseasessessessssssssssssssssssssssssesssssessssssssssssssssssssssssssssssssssssessesssssessssssssssssssssassssssssssssssssessssesassasses 139

Language Reference Guide - NetLinx Programming 11

Table of Contents

TIMELINE_RESTARTcvuturiureueusesseusessesssssesssssstssessessessesssssessssssssssssssssastastastustsstssessesssssssssssssssssssssssssastastastustustasssssasessssasses 140
TIMELINE_SET ..evueuteueusesssessissssessessssessessssessesssssssesssssssessssssstssssssstsssssssesssssssesssssssssstsssssssssssssasssssssasssssssasssssssasssssssssssnsssans 140
UNICode KeYWOrdSccccciieeiiiiniiiineiiiieeninieeicnenecnsenncssenssssensssssnsssssnsesssnsseenes 141
OVEIVIEW ..cceeeiiiiiiineiiiiiteeiintieeeeiitieeneesssreasessssteasssssstesssssssssessssssssssnssssssssanssssssssnnssssnns 141
Working With UniCode in NetLinX Studio.....cccceeeiiiiiimiiiiiiiicinireeccnnreeeceeneeneceeeseenes 141
Configuring NEtLINX STUIO....ccceueeeteemiriiiiieeeiietiiteeteeeeeeennaerreeeeeeeeeeeeeseesssnssssssssssssssssssesssesssssssssssses 141
Enabling UTF-8 in NetLinX STUIO ...cccccciirieeeeeeeeeeetitiieeteeesecseessssnsnnnsnsneeseeeeeesseesssssssssssssssssssssssssnnnsssssssssasaans 141
Enabling Unicode Compiling in NetLinX STUIOccoiiiiiiiiiiiiiieniiintnnncn s seessseeseessessseessssssees 141
Including the UNICOde LIDrary ... eeecieieeieccerieieceeteeeneeieeeeeensneessesnssesssessnssesesssnnsssessessnssnss snssssanes 142
Defining @ UNicode String LIteral........eceeeiiiiiiiiiiiieeeeeeeeeree e esssseses e ssssnnneneeeesesssssssssssssss sessssnns 142
StOring @ UNICOAE SEFING ..cceiiiiiiieieieeiiiriiccinieitnteeeceeeeeeneeeeissssesssstesseessennnnsssssssssssssssssssssassssssssssssses 142
Working with WIDECHAR Arrays and Unicode StringsS......cccccceeeeerrreuncerireenenieeereennneceeseennsecessesnnsncesanes 142
(04 g =T - Tou =1 g 08= T-T=10 =T o 11 T T30 143
(O€e] g Tor=1 {1 g F=1 o[T« B3 1 o [' [Tt 143
Converting Between WIDECHAR and CHARuuuuuiiiiiiiiiiiiiiiiiinsseneeinnsessssssssssssssssssssssssssssssnns 143
USING FORMATceiiiiiiicciiteenenceetetnenssesseeennsssssseennssssssssenssssssssennsssssssssnnsssssseennsssssssesnnssssssnnsssssssennnnns 143
Reading and WIting t0 FileS.....cciiiiiiiieeereeenriiiiiieeeniiiiieeeeeeenneesseesssssssesssssessessssssnssssssssssssssssssnnnnnnnnnes 143
Send Strings t0 @ USEr INEITACEcceiiiiiiieeeieeeteeencrrieeeeeeeeeeeeeeeeeeeenssssssssssssessesesseesseesessssnsnnssssssnnnnnsees 144
Right-to-Left UNICOAE StHiNGS.......ccrrerereiiiiiiiiiiccceerrrnenneeeeeetereeeessssssessessssssnnnsneseesseeasssssssssssansnssses 144
COMPIIEE EFTOFS. .. iiiiiiiiiiieeeieeeeeeenneeiesiieessieettaseeeesnnssnsssssssssssssssssssssssessssnssnssssssssssssssssssssssannnnnnsnssssssssns
(BT o TT 000 Yo (=3 Q=37 AT [0] f o £- 3RS
_WC e
WC_COMPARE_STRINGco0cvreerennes

WC_CONCAT_STRING
WC_DECODE....
WC_ENCODE
WC_FILE_CLOSE
WC_FILE_OPEN
WC_FILE _READccovccumirreiriccnnnnneeenen,
WC_FILE_READ_LINE..........cccecuuuuueennn
WC_FILE_WRITE
WC_FILE_WRITE_LINE..........ccccuuuueeeenn
WC_FIND_STRING
WC_GET_BUFFER_CHAR

WO _GET _BUFFER_STRING.....ccittuittiitiiteiteieeeireeeteecteeeteestsssssssssssesssesssssssssssnsssssssnnnns 148

WEC _LEFT _STRING.....cttuiitiieiiteiteniteeireeieeeteeseenseesseesesssssssssssssesssssssesssssssssssssssssssssesssessesssenssesnsennnee 148
WOC_LENGTH_STRINGcuiituiitiuiiteeeeteeeeeteesettenserenssesssssesssssesssssssssssssssssessssssssnssnsssssnssessnnnes 148

WO _LOWER _STRINGituiitiiteiiieieteiteeieeeieeeieneesneetsestsestsssssssesssssssesssssssssssssssssssssesssesssnsssssssnnsns 148

WC_MAX _LENGTH_STRINGcuttuittuiieuieeeiieeieeceeeeeeecteesteestsssesssesssesssssssssssssssssssssesssesssnssesssennnns 148

WO _MID _STRING....ccuiituuiiieenieteeeieteneeeteneieressesessssesesssesssssesssssessansssssnsssssnssesennnes 148

WEC _REMOVE_STRING ... ccuttuiituiiteiieeireeireeeteteeesesesessecssesssssssssenssssssesssssssssssssssssesssesssesssnsssssssnnnns 148

WO _RIGHT _STRING.......ceuiteiieiiteieeeiteeieeeieeeieneeeaseesestassssssssssesssssssssssssssssssssssssssssesssessssssssssssssssssssssssnsssssssssssssssssssssenssennsennnes 149
WOC_SET_LENGTH_STRINGcoeuuiiituuiiieneieteneeetennereessersesserssssesssssesssssesssssessssssssssssssssssssssssssssssessssssssssesssssssssssssssnsssssnssesannnes 149

L1 Lo 1o T o - N 149
WEC_TP_ENGCODE........oeiteiiteiiteiieeireeereeereeereserasessssenssssssssssssssesssssssssssssssssssssssssesssesssesssssssssnssasssnsssnsssnsssssssssssssesssssssenssennsennnne 149

WO _UPPER_STRINGcceuiiieuiiitenieteneieteneietenseeresssesssssesssssesssssesssssesssssssssssssssssssssssssssnssssssssessssssssssssssssssssssssssssssssnsssssnsssssnnnns 149
Variables KEYWOIrdSccccieeniienirieiiieireeiteeecrenereenerensennesessssnsessnscsessensesenseens 190
OVEIVIEW .euurerueenreeeerenreieesteseessesessssssssasssssesssssessssssssssessassesssssssssssssssssssssssssssssenssnssnssnsses 150
£ oo] o 1= RN 150
(o Tot= I £= 1 4= 1 o] [=E=3 150

(] o] o T 1 IV Z= 1§ =1 o] (=St 151
{0001 43 =] o T o4 /20N 151

Language Reference Guide - NetLinx Programming 12

Table of Contents

(20 =Y G131 (=] o (o =S PR - %

[\ oY g BV A b= A (=R 2= T =1 o] {3 3 151
VLo F L] LI 2= g F= 1] L= 3Rt 151

Y T =] 1A 2= 1 =1 o1 (= 151
{000 0 13 = 1 1| < 152
Variables KEYWOIdS....c...cciiiiiuiiiiiiieiiiiiiieiiniieneiniieneeiinieensssstseassssssssssssssssssssssssssenns 152
ABS_VALUEeeceeeeeetctctccsrtetesese e ssssssssssssssssssssassssssssssssssatsssssssssnsasassssssssssasssasssssssssssnssnns 152
CONSTANT .eeerrcrcteaeerreseresesesessesseseseseseasasesesssesessssasasssesssesessasaresssesesesessasssesssesesessssarasssessnes 152
LOCAL_VARovurernrrererescsesesesesessssssassssssssssessssasassesssssssesssssasasassssssssesssssesssssassssssssssesssssesnsans 152
MAX_VALUEcevevvncrercecesssesesesstsssssssssssssssssssssssssssssasessssssssssasassssssssssssssssssssesssssssassssssses 152
MIN_VALUE eetetetereae ettt eae bt r st erese R e s b s s eseasasaraseresenn 152
NON_VOLATILE ...cuvuvurereeuctcreresesesessssssesesssesesesessssssssssssssesessssssssssssssssssssssssssesasssassssssesesesesssssessssssssssesessssssssssssssesssesessnsnsses 153

(] 5 T 153

ON ceoeeceeertetereaeae s s esese s s st sesesesese s st ebeseseasas s e s s s e s e s e R e R s Re bt eseseReRe R s s b b ebeseaeararasereneaes 153
PERSISTENT ...ouvuveieeeeeeacscsesesetsesssssssssssesssesesesssasassesesssesesssasasasassesssssesssesesssasassssssesesesesssasasssssassssssesesssesssnsssassssesssssssssnsses 153
RANDOM_NUMBER.........ccettittirceesiartesssssesesssssssssssssssssassssssssssssssssasstsssssssssasssassssssssssssssessssssssssassesssssesssssssstessssssssssnsnsans 153
STACK_VAR.....cucreueereteeereseaesesesesesesesssssssessssssssssssesssssessssssssssssessssssssasesessssssssssasessesesssensassns 153
TOTAL_OFF cuucuceeeercrceeeerenssesssssesesesesesssssssssassssssssssesssasssssassssesesesssesesssssasassssssesssssesnsasasasasassens 153
TYPE_CAST eeeeteteeee ettt ettt b eae e s s s st aeaeanes 153
VOLATILE ...vvveeeeeeereretenesesnssesesessssssasesesesesessasssssesessssssssassssssssssssasasesssesssessssasssssesessssssnsasesens 153

WAt KEYWOIAScoieeiiiiiieiieeccreecreecreeeeenneseaseasesenserensesnsesensessssssasssensssnnenes | D4

OVEIVIBW ueururenenrereerereererasserecsssessasses |4

TYPES Of WaitS.coeeeiiiiiieiieeiieirrcnneeeerreeteetrteseeessssssssnnnnnerreseeessesesesssssssssssnnnmnrneeeesessssassssssssasssssssssssnnnnnns 154
NAMING WaItS ..ciieeiiiiiiieiiiiiiiirieiiniiteneiiniiiensssiettensssssstsressasssssssssssnsssss 154
NESTING WIS ... cieeeeiiiiiiiiicetetiiceertreetceeeeeeeaneeeeseennssneeseeennsseseesennssssessssnnsssssessnsssessesesnnsssesnsssnsessnnnnnnns 154
Using Waits - LIMitatioNns ..ot eees s s s s e ssnnannnenes 154
WAILT KEYWOIAS ..ccuuiiiiieeiiiiiiinneiiiieeneieetiennsiiesteensssssssennssssssssnssssssssnnssssssssnsssssssannsssssases 194
CANCEL _ALL WATT....cuirueurisesessesssessessssessesssssssesssssssessessssassessssesstssssssstssssssstssssssstssssssssasssssstssssssstessssssssssssssssssssssssssassnss 154
CANCEL ALL WATT _UNTIL....curuiureeceremeessensesessessessessssessassssessessssessssssstssssssstsssssssesstssssesstssssssstssssssstssssssstssssssstsssssssesstssssas 154
CANCEL _WALTcuveeereurineessesssessessssesstsssssssesssssssesssasasssssssssssssssesssssssssssssssssssssssssassnes 154
CANCEL WATT_UNTIL cuocucteuiereessesssessesssessesssssssessessssessassssssssssssssssssssssstssssssstssssssssssssssssssssssssssssssstesssssssssssssssssssssssssssssnss 155
PAUSE _ALL WAIT....eueurieuenrisesessessssesstssssesstssssesstssssssstssssssstssssssstssssssstssssssstasssssstsstesssssstssssssstssssssstssssssstssssssstsssssstsstsssesss 155
PAUSE_WALTevereurieneensessessssesssssssessssssssssssssssssssssssssssssssasssssssssssssssassssssssssssssssssassssssassssases 155
RESTART_ALL_WAIT ettt et e A st E Rt a s bt e st st e e 155
RESTART_WAIT ...coueuiuruenincesensissssessessssesstssssesstustssssenstssssesstssssesstssssesstssssssstesssssstsstsssstssssssstssssssstsstesssssstssssesstsssssstsstsssnss 155
WAIT ..orerereerrenessssessesssessessssessessssessssssssassssssesssssssssssassssasssssssassasssssssssssssasssssssassssssassssases 155
WAIT _UNTIL cooveruieceeurinessessesesssssesssssssesssssssesssssssessssssssssssssssssssssssassssssssssssssssssssssssssssssssssssssens 155
TIMED_WAIT UNTIL....crteeueureeuensesssensessssessassssessesssssssessssssstnssssssesssssssesssssssesstssssesstssssssstassstsssssstsssssssenssssssensssssssnsensssane 155

Appendix A - Compiler Warning & Errorsccccccceveeceeenerenccennerenncrenncenscsenceeess 156

CoMPIler WarNiNgS .. ccccecereeeireenierenncereeeserenssessnsessasssssssssssnsssssensssssnsssssnsssssnsssssnsssssnnses 190

(w) Cannot assign unlike types
(w) DEFINE_CALL is not usedcccccccereeuennnnnees
(w) Integer applies to arrays only.........cccceereene..
(w) Long_While within While
(w) Possibly too many nested levels
(w) Variable is not used

[0€0] 13101 [=1 gl =1 o] -SSP UOUPUOPPPUPORRRPPTORRRRPPPPR -] -

A "<SYMDBOIS" WAS XPECLEMuuueeeiiiiiiiirnnteieieiirnneetiesiessssnsesesssssssnsesssessssssssssssssssssnsssssssssssnssssssssssssssnsasssssssssnsasssesssssnnsssass 156
ACTIVE keyword expected Eeeeeseeteseeesssanereteeesesaateteseses et e tese s a s e e e s e s sa Rat e e et ees R ataeesesssessnasesesssrnnans 156
Allowed ONlY iN DEFINE_STARTccceeireererercsereserssssnsssnsnananns 156
Attempted CALL to undefined SUBFOULING.......ciiiieeiiiiiiieeeieicncrneeeteseccseeeeeesssssnesessssssssnssssssssssssssnsssssssssssnnasssssssssnnsanans 156
Comment never ends, EOF @NCOUNEEIEd.......cccovveiiiiiiiiiineieiiiiiiinnetiieniisseseissessssssesssssssssssssssesssssssssssssssssssssssssosssssssssssssssss 156
(o€eTq e [1dTeTa =1 W ofeTa] o] (=R L=F3 g Ve R o T Xe (1= « AU RRRRRN 156
CoNStaNt tYPE NOL AlIOWEd.cueeiiiiiiieietiieiieeietercseneeetesesssnneeseessssssnessssssssssnnsassssssssnssasssessssssnnsessssssssnnsenssessssssnasssssssns 156
DEFINE_CALL MUSt haVe @ NAM@.......uuueeeiiiiiiiiieiiiiiinieneetinssssnsessssssssssssssssssssssssessssssssnssssssssssssssnsanss 156
DEFINE_CALL Name already USEAuueeiiiiiiiiiiiiiiiiieetiiiniieeeesssesssasne s s ses s ssase s ses s s sanss e sesssssnssassessssssssnssssssessssnsnssssessnes 157

Language Reference Guide - NetLinx Programming 13

Table of Contents

Device Values MUSE DO QUuuiiiiiiiiiieiiiiiiiietiieienneesssssssssnesssssssssnssssessssssssssssssssssnssssssssssssssnsesssssssssssssssessssssnssssssssns
Duplicate symbol
Evaluation stack overflow
Evaluation stack underflow
Identifier expected.......
Identifier is not an array type
Include file not found
Invalid include file name
Library file not found
Maximum string length exceeded.......................
Must be char array reference...
Must be integer reference.........cceeeeeeecnneenns
Out of memory
Parameter mismatch in CALL ..
PROGRAM_NAME must be on line 1...................
Push/Release not allowed within Push/Release
Push/Release not allowed within Wait
PUSH_CHANNEL not allowed within Wait
RELEASE_CHANNEL not allowed within Wait.....
PUSH_DEVICE not allowed within Walitcccccovveeeiiiiiirsneeeeeeeiccnseneenns
RELEASE_DEVICE not allowed within Wait
String constant expectedcccccvveeiiiiiiiinneniiinninnnennnnaeeeenes

String constant never ends, EOF encountered
String literal eXpected.........uiiiiiiirieeeiiiiiiieereiencneeese e neee e se s sssnnnenes
Subroutine may not call itself.
537101 = V. =] o]
SYSTEM_CALL name not same as PROGRAM_NAME in <file> 157
This variable type NOt @llOWEd.........coouuiiiiiiiiiiiiieirt ettt as e s s as e s s ar e s aae s sne e s nane 157
{01 B T 1 0 1= =3 o] 3P PRRRURRRPRRR -1 - 1
|22 T I 133 T T4 7« [T o RPN 158
[2F 1o I 133 T [o 1 o€] | O SPUSURRRRIRN 158
Bad EIE@MENT @SSIGN... c.uuveiiiiiiiiinriiiiiiirineettieeiissnetetesesssneessessssssnnssssssssssssssssssssssssnsesssssssssssasssesssssssnsassssssssnnsasssessssssnassessssns 158
Bad Off... Bad ON... BAA TO... coceceiiiiiiiinneiiieiiisnnesisssisssnssesessssssssesssesssssssssssossssssssssssssssssssessssssssssssssssssssssssssssssossssssnssssssssns 158
Bad re-assign Call..... eeeeessseseeettetansssiettetansssssettetansssisssesrnnnnssssaas 158
=22 o I T =T o 158
2= L JRoT= A =T 4V | TN 158
1= 2= T IR 1N 158
TO statements that occur outside the data flow of PUSH events/statements may not work ... 158
TOO fEW PArameters iN CALL.........ueeiiiiiiiiinieniieiinenesiisiisssensssissessssssssssssssssssssssssssssssssesssosssssssssssssssssssssssssesssssssssssessssssassssss 158
TOO MANY INCIUAE FIl@S....ueeeeeiieecceeteecccccrreee e eeeeecesreeeeee s e e snseeeesesesnsneeseasesssnseseesesssssssasesesssasssnsseessessssnnneeenassssrnnennnns 158
Too many parameters in CALL N 158
Type mismatch in fUNCHON CALLc.civiiiiieiiiiiiineetiiiisineneeiissssssneessssssssssssssssssssssnssssssessssssnssssssssns 158
Undefined identifier................ N 158
Unmatched #END_IF 158
Unrecognized character in input file.... 158
Use SYSTEM_CALL [instance] 'name’ . 158
Variable assignment not allowed here...................... 158
L= T T 8 0T 4 T RN 158

Appendix B - Master-To-Master (M2M)cccoreeeiiieeiiieenccreencrenecceeneecenneeees 159
OVEIVIEW ..uieeeiiiiiienneiiiiieenesietiiensssssnieesssssssssnssssssssnssssssssssssssssssnssssssssanssssssssnsssssssssnssssssss | D9
(= E1 =T g T = 1) = R § - 1)
[=13 €= gl Lo 10 1 [T ORI I~

Route Modes (NOrmal and DIr€CL)cceeeeeeeuuueriiieiieiiiiiiiieeeeteeeneensssssessseesessesseeesssnnnssssssssssssssssssssssnnnnns 160
Design Considerations, Constraints, and Topologies.......ccccceeveererreencrreenccreencereenenenee. 161
[T=E3 T o T 0€eT 0 T3 T [T o= 1T 4 =3 N 161
L0000 13 1 = o £ 162
(od o =114 T o]0 Yo] o T | V2N PURS USROS 162
1] 2= Tl I o Yo Lo c 162
ClUSTEr TOPOIOGY ... iiiiiieiiiiiiineniiiiiieneisitteenesseeternnsssesssennessssssssnsssssssssssssssssssnsesssssssnnsssssssssssssssannsssssnes 163

Language Reference Guide - NetLinx Programming

Table of Contents

(O€=T-Tof=T (=3 oY 7o] [0 Y« PO PTUPORPPORRt 164
Cluster Topology Modifi@d........cceeeeeeeurriiiiiiiiiiiiiiiireeeeneeeeeeresssseeestttseeeseennsnessssssssssssssssssssasassssssssssses 165
Configuring and Programming M2M Systemscccceeuceirieencierieennceneeenneeeeeennneeeseens 166
Using NetLinx Studio With M2M SyStemssccciiueiiiiiiiimiiiiiienericnirrenceiestreenesssssseennsssssssssnsssssssssnnnes 166
Using Telnet With M2M SyStemS......cccceevieeeeeiiiiiieiiiiiiiiitieeeereeneeesssssssssssesessessesessssssssssssssssssssssssnnnnnes 167
Control/NetLinX Language SUPPOILccccccceerrercccneemererreesssesseessssssnssnmmseeesasssssssssssssssssssnnmsnsessssssasses 167
Design Consideration and CONSIraintscccccciiiiiiemeiiiiiiiinniiiiiiicnnrreneissereenesssseneennsssessesnnssssssenns 168
INtEr-Master Vari@bles ...ttt esssssssesssssssssss s s s sssssssssssssssssnssssas 168
Using Virtual Devices @s MOderators..........uueeeeiiiiiiiiiiiiiiiiieetieceeeeesrsssssse sttt s s s e sssnaasssesssssssessssessannnns 168
Code Example: Tracking Online/Offline State In a Remote Master.......cccccrreeerrreeenccciceiiieneneeeeeeennnee. 168
Modifying the URL List From Within the NetLinX Codecceeeiiiiiiiiiiiiiiiiieeeenennneeisssissssseneeeeneeeeenenns 168
M2M Processing Queues and Troubleshootingcciiiiiiiiiiiiiiiiiiiiiiiirrcccsnrees e rreeeeeeeeeeeees 168
GENEIAl M2M ISSUES ...cormiuuueeniiiiiiiititiiiieeee e teasaeeaa et s ee s st e e e s e e e s e aasssaasssesssssssessasasssssesssssnnnssssssssssnnns 168

Appendix C - Marshalling Protocolccceeieiieeiieiriecreccreereecreeeenneseneenes. 169

OVEBIVIBW ..eeieiiieieniteeteecterencteetenceescescsassescsessaseensssssssssssssnsssssssssssssasssnssnssssssnsssnssnsesnssnnes 169
Marshalled Stream FOrmat... ... ittt ereecreneeesesenesensesansesnnenes 169
BYTE oueueueueueueretesessssssesesesssssesessssssssesesessssssessssssesesesesesnssssssssesesesessnsnsnssssesesesesesnsnsnssnsess 169
WORDovvrereeaereresesesesesess s s sesessssesesassssssesessssesassssssesesesessesnsasassssssesssesesssssesasassenssene 169
DWORD.......cueuererrrererassesesesesesesssessssesesesesssessessssesesesesesnsesessssssssesesessssssessssesesesesssssesesans 169
QWORDceveeuerereresetessesessssssesesessesssessssssesesesessnsnssssssesesesesessssessssssssesesessssesnsnssssessnesens 169
BYTESTR ..cevvetrreerersesesesesesesesssessssesesesssssesesasassesesessssnsassssssssesesesesssssesasasssssssssssssnsnsssesans 169
WORDSTRcveuererereritesessessssssesesesessessssssassssesesesssesessssssssesesesesssesessssssssssesesssessssssssssessnssens 169
DWORDSTRcoevevrererennerenenenns eeeeteaeaesesesesassaeaeaeaetet sttt AR R et et s s AR R AR b et bR s s s A eReseseteatesasaean 169
QWORDSTReuvrreriteteneresesesssesesesessesesassssssesessssessassssssesesesesessssesassssssesssssessssssasssssssssnssene 169
LBYTESTR....cucueueterenrersesesesesesessssssssssesesesesssesssssssesesesesssnsessssssssssesssessnssssnssssesesesessssnsnsesass 169
Marshalling Protocol (Variables)uceeeiiiiieeiiiiirecciirteecccntreneccsnreneeeeesseneeeeessennenns 170
Marshalled Stream FOrMaAt iiieeiiieiieiecccrttieeeeeeeereeenneeeeeennsseeesesennssesssssnnssessesssnnsssessssnnsssesnnnnnns 170
BYTE oucurueueueeereteeetesssssssesesesesssesesassssesesesesesesesasassesesesessesesasassssesesessssesesesasasassesesesesesessesesesasasassesesesesessesesasaesesesesesesesasasses 170
UWORD.......ecueveteverrereressesesesesesssssssessssssesessssssessssssesesesssssessssssssesesssssesesnsessssssesesesesesesesssesessssssssesesesesesssnssssssesesesssesessssnsses 170
WORDoovevvereeeesesesesesesessesessssssesesesessssessssssssesesssessnsnssssssesesssesesessnssssssssesesesesessnssssssssssesesesesessesnssssssssesesesesssnsesnssssesesne 170
ULONG.....ocuirererersesaesesesesesesessssessssssesessssssssessssssesesessssesassssssssssesssssesesessssssssssesesesesesesssesassssssssssesesessssesesnssssesesesssesessssasses 170
LONG ...cucueuererereressessssesesesesessssessssssssesessssssesessssesesesssessnssssssssssesesesesesessssssssssesesesesesesnsesassssssssesesesesesssnssssssesesesesesessnsnsses 170
FLOAT eeereaeseaesesesesassaeaeaeaesete sttt AR R et et eR R bt s s as s AR st e s st s s e R eseseseaetesesanan 170
DOUBLEcvcvveiereesesesesesesessssesassssssesesssssesesasassesesessssesesasassssesessssssnsesessssssssesesesesesessesesssassssssesesessssessssssesesesesesessnsnsses 170
STRUCT c.euvrteeeeereresesesetesessssssssesesesesessssessssssesesesssssssssssssesesesssssesesessssssssesesesesesesesessssesssssesesesesessesesnssssssesesesessssnsnsnssssesesns 170
ENDSTRUCT .ovveceeeeretetetesesesesessesssesesssssssesssssssssesesesessesnssssssesesessssssnsnssssssssesesessesnssssssenssssssssesesesesesessnsnssssesesesesesessnsnsnes 170
ARRAYo.oovrereesisesesesesesesesasssssesesesesssessssssssssssssssesssassssssssesesesesssssassssssesesesesessesssssssassesesesesesesesessssassssesesesesssesesassessses 170
SKIP ...veveveereeesesesesesesssesesesesassssesesesesesssesessssssssesessssssessssssssesesessssesessssssssesesesesessesesssesassssesesesesesesssesssnssesesesessssesesassesesne 170
ENCOdING NOTES ...cuuiiiiiiiiiiiiiiiieeiiitieteeiiettrenneseesttennesssstsennssssesssnnssssssssennesssssssnnsssssssssnnsssssnnssssssssnnnsnss 171
SEHNG ENCOMING oeuuiiiiiieiiiiiiieeieeetteteneeeeeeenneeeeeeeenssneseesenassesesssnnsssssssssnsssesssssnnssssssssnnssssssessessssnnsnsssanes 171
STRUCT c.euveiereerereseresesesesss s e sesesesssssssasasassssssessssssesassssssesesessssesasasssassssesesesesesesessssssssssesesesesesesesesssssassesesesesesessesnsasseseses 171
ARRAYoovvereereresesesisesesesesssssesesesesesssssessssesesssessssesassssssesesesssesesessssssssesesesesesssssssssssssesesesesesesessesssassesesesesesesessnsassesesane 171
Array - String @NCOAING (STFNGS) ..uciiiiierirrrrriiiieiirnretrieiiisssetetessssssssnesssessssssnsssssssssssasssssssssssnsassssssssssssnsasssssssssnsassssssssssnnsanes 171
ARRAY - BiNAry ENCOAEM.......cioiiieiiiiiiiineieiiiiiineetstesssssets e s st e se e s seasse s s ses s sas e st e s sssssassasessessssssassesssesssssssesssessssansennns 171
Binary Array ENCOAINGcccoiiiiiiiiiiiiiiiiiiiiiiinniienrtees e aneeees s ssssssse s s s se s s e s s s s aansnsssssssssssssssssannsnnnnnnnnes 172
Binary ENCOdiNg RESUIL.........coeeeeiiiiiiiiiiiirinecrtrieeessetrreneeseessennssssessssnnsssssseensssssssssnnsssssssssssssssannssnss 172
XML ENCOAING RESUILeieieiiieiieieiictieeieceeeteennneeeeetennsseeeeteennsesessesnnsssessssnssssssessnssssssssssnssnssssnssnsssssnnns 174

Language Reference Guide - NetLinx Programming 15

Table of Contents

Appendix D - NEetLIiNX VS. AXCESS ..cccccerreerirrenncrrennicrennscsenssssenssssnsssssnssssnnscses 1 7D

OVEIVIEW ..ceeeiiiiiiiieeiitiiteeiniieeeeietireneesesreasessssseasssssstesssssssssesssssssssenssssssssanssssssssnsssssnns 175
NetLinx vs. Axcess - Comparison by Structurecccceirieeiiiiiieecciiiieeecienneeeeccesnennen 175
DEFINE_DEVICEcccueetiiiiinniiinissinneesiissassesssessssseessssssssessssssssnsesssssssssssssesssssssssssssansessssssssssnsessssssns 175
DEFINE _CONSTANT ... iiiiiieeietteeietrneetenesstreessssessessassssssnsssssnsssssnssssensssssnsssssnsssssnssssssssssssnsssssssssnssssane 175
DEFINE_VARIABLES.cccorrtttiiiinnnetiiiissntetissssssnnesssssssnssesssssssnsessssssssssessssssssnsesssssssnsessssssssnsnsesssssssns 176
DEFINE_CALL (SUBFOULINES) ..cccciuiiiiiiiinntiiiiienteiiieinneesisssansessessssaneessssssansessssssssnsessssssssssesssssssssnns 176
DEFINE _START ...cuiiiieiiiieiiiteieteneiteeessrenessrsnsssssnsssssnsssssnsssssassessasssssnsssssssssssassssansssssnssssssnsssanssssansasssnns 176
DEFINE_EVENT ..ccciiiiiinriiiiiinnneenieesssnnessssssssnnessssssssssssssssssnsessssssssnsesssssssssessssssssnsessssssssssssssssssssnsassssssnnns 177
DEFINE_PROGRAMccoiiiiiiitiiiiiiinettiiiiestesssssssssessssssassessssssssseesssssssssessssssssssesssssssssssssessssnsnsesssssssns 177
Axcess/NetLinx Incompatibilityc.ccceereeemiiiiieieiierr e erreene e e e eeeneeeeeeenes 178
Combining Devices, Channels and Levels........ccoreeiiieeiiieecireencerreeeereneeerenecsennesennes 178
Virtual devices, levels and device/channel Sets...... ittt crereeeeeeeeeseeesenneens 178
Combining and UNComMbiNiNG A@VICESccueuuieiiiieniciieeieeeceeeneeeeeeteeneeeeeeeeensseseeseennsssesesesnasssesesnnssnnnns 178
Combining and Uncombining l@Vels.........cciiiiiiiiiiciniiiiiinerreceeteersssssess s e s se s s esnaans 179
Combining and Uncombining channels...........eeeiiiiiiiiiiiiiiiiieeieeeeeresissieecesneeeeeeseeeesnsnsssesssssssssses 179
£33 d g oo J0Ce] 1] o =1 g 1T o] o 1= 7N 179
P2V (od-1-1-F oo Ta (T3 [gTe T ol 44 o 2= g £ o o TN 179
NetLinx code - StriNg COMPAKiSON.......ccuueeeueeeeniiiieeiiiiitiiiiieeeerennmsesssssssssssssessessssssssssssssssssssssssssssnnnnnnes 179
1 [T LT ==Y 179

Language Reference Guide - NetLinx Programming 16

NetLinx Programming Language

NetLinx Programming Language

Overview

NetLinx® is a superset of the Axcess language with extensions for additional data types, new event handlers, structure support,
multi-dimensional arrays, and other features.

This document assumes that you are familiar with Axcess; the focus is on the new language elements and how they extend the
functionality of the existing language. For background information on Axcess, refer to the Axcess Programming Language
instruction manual.

Conventions Used in This Document

NetLinx contains a number of keywords that define various available operations to perform in a NetLinx command, such as the
word CALL in the statement:

CALL 'Read Data' (Buffer)
Keywords are case insensitive. For example, the PUSH command is the same as push. Keywords are reserved, meaning that
identifiers (device names, constants, or variables) must have unique names. These keywords are listed and defined in this
document, separated by category.
e Square brackets indicate an optional element in a command.
e Angle brackets indicate substitution.

In the example below, the notation <return type> indicates that a valid data type (such as CHAR, INTEGER, or FLOAT) must be
substituted for <return type>.

The square brackets surrounding it indicate that the return type is optional:
DEFI NE_FUNCTI ON [<return type>] <nane> [(Paranl, Paran2, .)]

(* body of subroutine *)

}
NetLinx Programming Overview

The NetLinx control system was designed to upgrade the processor bus and improve the power of the Axcess programming
language. Originally named Axcess2, the NetLinx was designed to be a superset of the Axcess programming language. The

relationship between the new language (NetLinx) and Axcess is very similar to the relationship between C++ and C.

Just as C++ brought a whole new level of power to C programming, NetLinx offers a variety of new tools and commands to
dynamically increase the speed and power of present and future applications.

NOTE: Use the NetLinx Studio software program to create, compile, and transfer Axcess/NetLinx code.

Mainline
Mainline is the program section executed continuously by the NetLinx Central Controller as long as the Controller has power.
DEFI NE_PROCGRAMcontains the code known as mainline.

A typical NetLinx program is composed of a number of different sections. Each section defines some aspect of a program such as
device definitions, variable declarations, channel characteristics, or event processing. The sections that can comprise a NetLinx
program are listed in the following table:

Program Sections

DEFI NE_DEVI CE DEFI NE_MUTUALLY_EXCLUSI VE
DEFI NE_COWVBI NE DEFI NE_TOGGLI NG

DEFI NE_CONSTANT DEFI NE_CALL

DEFI NE_TYPE DEFI NE_FUNCTI ON

DEFI NE_VARI ABLE DEFI NE_START

DEFI NE_CONNECT_LEVEL DEFI NE_EVENT

DEFI NE_LATCHI NG DEFI NE_PROGRAM

Not all of the sections listed above are required to create a complete program. In an Axcess system, only DEFINE_PROGRAM is
required. In a NetLinx system, either DEFINE_PROGRAM or DEFINE_EVENT is required. Other sections are required only to support
code in one of these two sections, although the compiler might require more.

Axcess communication updates occur only between passes through mainline (or after each iteration through LONG_WHILE loops).
This places timing constraints on mainline processing in order for the system to operate properly. NetLinx avoids these constraints
by processing network activity through a separate thread of execution. Bus activity is serviced concurrently with event processing
and mainline execution. The event processing that previously could occur only through mainline code can now be handled through
code in the DEFINE_EVENT section. This provides a more efficient mechanism for processing events; mainline does not have to be
traversed to process a single I/0 request. A handler can be defined for processing device-specific events, as well as providing
feedback for the device initiating the event notification. If a handler is present, mainline will not be called to process the event; the
handler is called instead. Once the handler completes its execution, the system is ready to process the next input message. When
no more messages are pending, mainline runs.

Language Reference Guide - NetLinx Programming 17

NetLinx Programming Language

In effect, mainline in NetLinx is an idle time process. With the addition of the DEFINE_EVENT section for processing events, the role
of mainline in a NetLinx program becomes greatly diminished if not totally eliminated. Programs can still be written using the
traditional technique of processing events and providing feedback through mainline code. However, programs written using the
event table structure, provided in the NetLinx system, will run faster and be easier to maintain. FIG. 1 illustrates message and
mainline processing as it appears in the NetLinx system. Note that bus servicing is taken care of by a separate process thread
(Connection Manager & Message Dispatcher) and, therefore, is not a task that must follow mainline.

Communications
Bus

Message Messages

Dispatcher
_ Message
Connection Queue b
Manager T DEFINE_EVENT

1. Service Wait Lists

2. Turn Off Expired Evant Handlars

Next Message

Message Not Handlec
ar
Mo More Messages

DEFINE_FPROGRAM

End of Program

-

Next Message

FIG. 1 Message and Mainline Processing in the NetLinx System

Understanding When DEFINE_PROGRAM Runs
This section describes the scenarios in which DEFI NE_PROGRAMruns (or, why loops in mainline are bad). Understanding this
process can explain programs with abnormally high CPU usage and how to fix them.
Summary:
e Use STACK_VAR whenever possible,
e Use a short WAIT in DEFINE_PROGRAM when it is not.

The Four Conditions That Cause the NetLinx Master To Run DEFINE_PROGRAM
1. Anunhandled event occurs

2. Avariable is written to* (this is the CPU usage culprit)

3. The ‘run occasionally anyway’ timer fires (~1/second)

4. The event queue has become empty

Unhandled Events
e DEFINE_PROGRAM runs when an unhandled event occurs, which ensures that channel- or level-based feedback is up to
date.
e It also aides backwards compatibility by allowing SYSTEM_CALLs and mainline PUSH and RELEASE statements to run.
To understand unhandled events, consider the following code:

BUTTON_EVENT[dvTP, 123]

{
PUSH:

PULSE[dvRel ay, 1]

}
}

When someone presses button 123, there are 3 unhandled events and 1 handled event. The button press has been handled by
PUSH, but the RELEASE, channel ON, and eventual channel OFF are not handled. The result is that DEFINE_PROGRAM runs far more
often than the button push in DEFINE_EVENT. Normally, this is not a large concern. (A user can only poke the system so fast).
However, if want to, you can prevent this by adding empty BUTTON_EVENTs and CHANNEL_EVENTS, like this:

BUTTON_EVENT[dvTP, 0]
{

PUSH: {}

RELEASE: {}
CHANNEL_EVENT[dvRel ay, 0]

ON: {}
OFF: {}

Now, all channel-related events will be handled and DEFINE_PROGRAM will not run for these events.

Language Reference Guide - NetLinx Programming 18

NetLinx Programming Language

Writing To a Variable:
The second condition (a variable being written to) is the culprit for abnormally high CPU usage. The intent behind this trigger for
DEFINE_PROGRAM is to more accurately display feedback in a timely fashion. Since many people use DEFINE_PROGRAM to set
button feedback with statements like:

[dvTP, 201] = (nCurrentlnput == 1)
...it makes sense to run DEFINE_PROGRAM if any change is detected in the states of any variable in the program. Normally, this is a
very beneficial process. The problem comes with using loops to set feedback.
This code will cause high CPU usage:

DEFI NE_VARI ABLE

VOLATI LE | NTEGER | NC
DEFI NE_PROGRAM
FOR(1 NC=1; | NC<=8; | NC++)

[dvTP, 200+l NC] = (nCurrentlnput == | NC)

}

It is not the loop itself that is the problem. It is the global variable INC being incremented that causes the issue. Since we’ve written
to a variable, DEFINE_PROGRAM will want to run again. If there are no other events waiting in the queue, it will do so immediately.
Of course, when it runs again, it will set itself up to run yet again....
The net result is that any time the processor would normally spend in an idle state is now consumed by repeatedly running
DEFINE_PROGRAM. This does not interfere with processing events that come in, as they are given priority. The only speed penalty
that is incurred is that the next incoming event can only be processed when the current pass of DEFINE_PROGRAM is finished. If
you have an exceedingly long DEFINE_PROGRAM, it will slow event processing down.

The usual message conveyed with loops in mainline is “DON’T”, but the code above can be fixed quite easily. All we need is a
variable that won’t be around when DEFINE_PROGRAM ends.

DEFI NE_PROGRAM

I NTEGER | NC
FOR(1 NC=1; | NC<=8; | NC++)
[dvTP, 200+ NC] = (nCurrentlnput == I NO)
}
}

There are three things to note here:

e We can arbitrarily ‘compound’ statements by placing them in braces

e Compounding allows us to define a local scope variable (they must be the first thing in a compound statement, before any

executable code)

e The default local scope variable behavior is STACK_VAR, which is released once you leave that block of code
Since the variable is destroyed upon exiting the code, no variables are left in the dirty state. No dirty variables means no reason to
run DEFINE_PROGRAM.
If we were to use a LOCAL_VAR instead, we would be back in a high CPU usage state as a LOCAL_VAR is non-volatile. It keeps its
value between uses and is still around and ‘written to’ once DEFINE_PROGRAM is done. If you simply must use a LOCAL_VAR or a
global-scope variable, there is still a way to salvage most of the CPU usage. If you employ a WAIT, you can control how often the
feedback runs.

DEFI NE_PROGRAM

WAIT 1

LOCAL_VAR | NTEGER | NC
FOR(1 NC=1; | NC<=8; | NG++)

{
[dvTP, 200+I NC] = (nCurrentlnput == | NC)
}
}

Now, no matter how often DEFINE_PROGRAM is compelled to run, the feedback will only run 10 times per second. A particular WAIT
in your NetLinx code can only be put in the WAIT list once at any given time. This makes it a great choice for periodic functionality.

The 1/sec Fail-Safe Timer

To make sure that any feedback statements in DEFINE_PROGRAM are enforced eventually, there is a timer that fires every second
that compels DEFINE_PROGRAM to run. This is given priority over event processing.

The 1/second mode can be proven easily. Just write this as the only line in the program:

DEFI NE_PROGRAM
SEND_STRI NG 0, ' DEFI NE_PROGRAM JUST RAN

Turn on NetLinx Internal Diagnostics Messages in NetLinx Studio and you will find that it occurs roughly once per second.

The 1/second fallback can cause one very large problem in one very specific situation. If you manage to write a DEFINE_PROGRAM
section that takes more than one whole second to run (> 400,000,000 machine instructions on a current master) then you can
actually stop processing any events.

Language Reference Guide - NetLinx Programming 19

NetLinx Programming Language

The event queue servicing becomes starved. When the ‘run anyway’ timer expires, it has the highest priority of any of the triggers.
If it fires before finishing the last ‘run anyway’ DEFINE_PROGRAM run, it will simply run again. If this happens every run of
DEFINE_PROGRAM, no events will be processed and the master will appear to be locked up.

In practice, DEFINE_PROGRAM should never run this long. If you are in a situation where you must process this much information,
you should consider making one iteration of a loop with each pass of DEFINE_PROGRAM. Instead of this:

DEFI NE_PROGRAM
FOR(1 NC=1; | NC<=4000000000; | NC++)
{

}
Do this:
DEFI NE_PROGRAM

/1 DO SOVETHI NG AWFUL W TH THE UNSI GNED LONG | NC

INC = | NC MOD 4000000000 // FORCE THE RANGE COF 0-3999999999
I NC++ /1 THEN ADD ONE

/11 DO THE SAME HORRIBLE THI NG, BUT ONLY 1/ PASS OF DEFI NE_PROGRAM

Of course, if you have reached the point where DEFI NE_PROGRAMtakes longer than a second to run, you are past the point of
needing another master on the job or re-evaluating your approach of the problem.

The Empty Event Queue

The final reason that DEFINE_PROGRAM will be run is when all the events that have come in have been processed. There are two
reasons we should not care about this:

1. When it occurs, our system is, by definition, not busy
2. In busier systems, this occurs with decreasing frequency.

Statements and Expressions

Statements

A statement refers to a complete programming instructions such as:

Y =X (* Variable Assignnment Statenent *)

X=X+1 (* Arithnetic Assignnent Statenent *)
IF(Y<10) Y=Y+ 1 (* IF Statenent *)

[TP, 5] = [VCR 1] (* Feedback Statenent *)

Each of these statements compile, providing the referenced variables are defined.
Expressions

Expressions are sub-components of statements.
The following expressions are used in the above example:

X+ 1 (* Arithmetic Expression *)
Y < 10 (* Logical Expression *)
Y+ 1 (* Arithnetic Expression *)

[TP, 5] (* 1/0 Device Expression *)
[VCR 1] (* 1/0O Device Expression *)

Expressions will not compile outside the context of a statement.

e It is strongly recommended that each statement appear on a separate line. The compiler cannot enforce this since full
backward compatibility with the previous Axcess language must be maintained.

e Itis also strongly recommended that semicolons be used to terminate each statement (as in the C language).

Assignments

Assignment statements include:
e Variables
e Qutput Channels

Variables

The simplest type of assignment statement is a variable, which assigns the value of an expression to a variable. The expression may
be a constant, a variable / mathematical / logical expression, or a return from function. The data type associated with the
expression should match the data type of the variable receiving the assignment. If not, the value of the expression is typecast to
match the destination variable.

Example:

Vari abl eNane = <expressi on>
Output channels
This type of statement is typically used for feedback. It sends an output change to the specified channel on the given device.
Example:

[Devi ce, Channel] = <expression>

Language Reference Guide - NetLinx Programming 20

NetLinx Programming Language

The expression is evaluated as follows:
e If it is non-zero, the channel associated with the device is turned on.
e Ifiitis zero, the channel is turned off.

Comments

Comments are designated with a parentheses-asterisk to begin the comment and asterisk-parentheses to end the comment; for
example, ("COMMENT*). These comments can span lines and are not limited in length.
NetLinx supports a second type of comment with a double forward-slash (/ /). All text following the double forward-slash is treated
as a comment. This type of comment closely follows the conventions of C++.
Comments are not part of the actual program code; they are not compiled. Comments can appear anywhere except within literal
strings, either on the same line as a programming statement or on a separate line. Comments can span multiple lines with a single
set of comment delimiters and can be nested. The compiler recognizes nested comments by pairing up sets of comment delimiters.
For example:

(* The section to follow contains all variable declarations. *)
Single line comments can be specified using the double forward slash (//) notation.
When a pair of forward slash characters is encountered, all text on the same line following the slash pair, except the *) end
comment sequence, is considered a comment and ignored by the compiler. For example:

(*I'NTEGER Vol 1 // volune for room1 *)
The "*) " in the line above terminates the open " (*" command even though it appears after a double slash comment command.

Language Reference Guide - NetLinx Programming 21

Identifiers

Identifiers

Overview

An Identifier is a combination of letters, numbers, or underscores that represents a device, constant, or variable. Identifier types
include:
e Devices
Device Arrays
Channel Arrays
Device-Channel Arrays
Level Arrays

Device-Level Arrays

Devices

A Device is any hardware component that can be connected to the NetLinx bus. Each device must be assigned a unique number to
identify it on the bus.

e NetLinx allows device numbers in the range 0-32767.

e Device 0 refers to the Master; numbers above 32767 are reserved for internal use.

NetLinx requires a Device:Port:System (D:P:S) specification where Axcess expected only a device number. This D:P:S triplet can be
expressed as a series of constants, variables separated by colons, or a DEV structure. For example:

STRUCTURE DEV

I NTEGER Nunber /1 Device nunber
I NTEGER Por t /1 Port on device
| NTEGER System /1 System device belongs to

}
A device specification in NetLinx can be expressed in one of two ways:
e Device Number: The compiler replaces the device number with an internally generated DEV structure. This DEV structure
contains the specified device Number. If the system and port specifications are omitted (e.g. 128), System 0 (indicating
this system - the system executing the code), and Port 1 (indicating the first port), is assumed.

e Device:Port:System (D:P:S): This notation is used to explicitly represent a device number, port, and system. For example,
128:1:0 represents the first port of the device number 128 on this system.

The syntax:
NUMBER: PORT: SYSTEM
Parameters:

Nunmber 16-bit integer representing the Device number
* Physical devices range from 1 to 32,000
« Virtual devices range from 32,768 to 36,863

Por t 16-bit integer representing the Port number, in the range 1 through the number of ports on the device (1 = this port)

System 16-bit integer representing the System number (0 = this system).

Device Numbers - Supported Ranges by Device Type

Each device requires a device number within the network, but many devices have range limitations on the device number that may
be used. If an incorrect device number outside of that range is assigned to a particular device, the module may not function

properly.

Master Device Number

The device number for the Master on a network must always be 0.

Physical Devices

Physical devices may be assigned a device number between 1 and 32000, with the exception of the examples in the table below:

Physical Device Numbers

1-32000 Physical Devices

1-255 Access or AxLink devices

5001 Traditional device number for the NetLinx Integrated Device
5002 Traditional device number for the NetLinx Integrated Switcher

6001-6999 Traditional device numbers for ICSNet and ICSLan devices, including DXLink Tx and Rxs
10001-32000 | Touch panels

Language Reference Guide - NetLinx Programming 22

Identifiers

Dynamically Assigned Devices
Device numbers dynamically assigned by the network are limited in range:

Dynamically Assigned Device Numbers

32001-32767 Dynamically assigned device numbers

Virtual Devices
Virtual devices must be assigned within a range of 32768 to 42000, with specific ranges for virtual device subcategories:

Virtual Device Numbers

32768-42000 | Virtual Devices
32768-36864 | User defined virtual devices

36865-37864 | Dynamic Virtual Devices

37865-40999 | NetLinx Module Virtual Devices
41001-42000 | Duet Module Virtual Devices
45001-45999 | Auto-setup DXLink Transmitters

46001-46999 | Auto-setup DXLink Receivers

Device Arrays

In order to specify a group of devices for a command or event handler, NetLinx provides the capability to define an array of DEVs
and treat it as a device array. A device array may be used anywhere a device specification is required. The result provides a range of
targets for the command or instruction where it is used. Device arrays are declared in the DEFINE_VARIABLE section of the
program in one of two ways:

DEV DSNare[] {Devl, Dev2, ..., Devn}

DEV DSNare[MaxLen] {Devl, Dev2, ..., Devn}
Each device name appearing on the right-hand side of the declaration should be defined as a device in the DEFI NE_DEVI CE
section; however, it can also be defined in the DEFI NE_VARI ABLE or DEFI NE_CONSTANT section.
The first statement above declares a device array whose maximum length is determined by the number of elements in the
initialization array on the right-hand side. The second form uses MaxLen to specify the maximum length of the device array. In
either case, the number of elements in the initialization array determines the effective length of the device array. That value can be
determined at run-time by calling LENGTH_ARRAY. The maximum length available for a device array can be determined by calling
MAX_LENGTH_ARRAY.
The following program fragment illustrates device array initialization:

DEFI NE_DEVI CE

panel 3 = 130

DEFI NE_CONSTANT

DEV panel 1
i nteger panel 2

128:1:0
129

DEFI NE_VARI ABLE
/1 dvs is an array of three devices:

11 128:1:0
11 129:1:0
11 130: 1: 0

DEV dvs[] = {panel 1, panel 2, panel 3}

The individual elements of a device array can be referenced by their defined names (Dev1, Dev2, etc.) or by using array notation
with the device array name. For example, the 3rd device in the device array, MyDeviceSet, would be referenced by MyDeviceSet[3].

The index of the last member of the array for which an event notification was received can be determined by calling
GET_LAST(MydeviceSet). This is useful for determining which device in an array is referenced in a particular notification message.

Device Array Examples
The command below sends 'CHARD10' to all devices in the array, DeviceSetA.

DEV DeviceSetAl] = {Devicel, Device2, Device3}
SEND_COMMAND Devi ceSet A, ' CHARD10'

The command below sends 'CHARD10' to the third device in the array, DeviceSetA,
SEND_COMMAND Devi ceSet A 3], ' CHARDLO'

and is equivalent to:
SEND_COMMAND Devi ce3, ' CHARDLO'

The intent of the feedback statement is to set channel 1 in every device in DeviceSetA to either on or off, depending on the value of
the right-hand expression; it is unclear what the right-hand expression evaluates to. The compiler will issue a warning indicating the
syntax is unclear and that DeviceSetB[1] is assumed. To avoid this warning, specify a particular device in the array. For example:

[DeviceSet A, 1] = [DeviceSetB[1], 2] (* Correct *)

Language Reference Guide - NetLinx Programming 23

Identifiers

Device-Channels and Device-Channel Arrays

As the name implies, a device-channel (DEVCHAN) is a combination of a device and a channel. It is represented internally as a
DEVCHAN structure. This structure combines the fields of a DEV structure representing the device with a field representing the
channel number:

STRUCTURE DEVCHAN

{
DEV // Devi ce
| NTEGER /I Channel

}

The first component of a device-channel pair represents the Device Number, Port, and System. It can be specified as either a single
device number, a constant DEV structure or as a D:P:S specification. Each device specified in a device-channel pair should be
defined in the DEFINE_DEVICE section.

Channels are expressed as integer constants. A DEVCHAN is declared in either the DEFINE_VARIABLE or DEFINE_CONSTANT
section. For example, "[128, 1]", "[CONSTANTDPS, 9]" and "[128:1:0, 5]" are all valid representations of device-channel pairs. A
DEVCHAN enclosed within square brackets implies an evaluation, whereas a DEVCHAN enclosed within curly braces does not, as
illustrated below:

DEFI NE_VARI ABLE
DEVCHAN dcl = {128:1:0, 1}
DEVCHAN deset[| = { {128:1:0, 1}, {128:1:0, 2}, {128:1:0, 3} }

DEFI NE_PROGRAM

IF ([dec1] || [128:1:0, 2]) /'l evaluation of 2 devchans
[del] =1 /1 feedback

dcl = {129:1:0, 2} // assigns a new value to dcl
[del] = {129:1:0, 2} /1 Syntax Error!

A DEVCHAN array is declared in the DEFINE_VARIABLE or DEFINE_CONSTANT section in one of two ways:

e Declare a DEVCHAN array whose maximum length is determined by the number of elements in the initialization array on the
right-hand side, as shown below:

DEVCHAN[] DCSNane = {{Devl, Chanl}, {Dev2, Chan2}, ...}
e Use MAXLEN to specify the maximum length of the array, as shown below:
DEVCHAN]] DCSNane[MAXLEN] = {{Devl, Chanl}, {Dev2, Chan2}, ...}

In either case, the number of elements in the initialization array determines the effective length of the array. That value can be
determined at run-time by calling LENGTH_ARRAY. The maximum length available for a DEVCHAN[] array can be determined by
calling MAX_LENGTH_ARRAY.

The individual elements of a DEVCHAN array can be referenced by their defined names (Dev1, Chan1, Dev2, Chan2, etc.) or by
using array notation with the device-channel array name. For example, the third element in the device-channel array, MyDCSet,
would be referenced by MyDCSet[3]. Furthermore, since a DEVCHAN array is an array of DEVCHAN structures, DEVCHAN members
can be referenced using the dot operator notation such as MyDCSet[3].Device or MyDCSet[1].Channel.

A DEVCHAN array can be used anywhere a [Device, Channel] specification is required with the result of providing a range of targets
for the command or instruction where it is used. This implies an alternate form for the following commands:

But t on[(DEVCHAN) | PULSE[(DEVCHAN) |
DO_PUSH[(DEVCHAN) | PUSH[(DEVCHAN) |
DO_RELEASE[(DEVCHAN) | RELEASE[(DEVCHAN) |
OFF[(DEVCHAN)] TJ (DEVCHAN)]

ON[(DEVCHAN)]

The index of the last member of the array for which an event notification was received can be determined by calling
GET_LAST(MyDCSet). This is useful for determining which device and channel in an array is referenced to in a particular
notification message.

Device-Level Arrays

A device-level array (DEVLEV array) is an array of device-level pairs. Each element is represented internally as a DEVLEV structure.
This structure combines the fields of a DEV structure representing the device with a field representing the level number.
STRUCTURE DEVLEV

{

DEV /1 Device
INTEGER // Level
}

The first component of a device-level pair (Device) represents the device number, port, and system. It can be specified as either a
single device number, a constant DEV structure or as a D:P:S specification. Each device specified in a device-level pair should be
defined in the DEFINE_DEVICE section. The second component is the level number on the device. The level number is expressed as
an integer constant.

Language Reference Guide - NetLinx Programming 24

Identifiers

A DEVLEV array is declared in the DEFINE_VARIABLE or DEFINE_CONSTANT section in one of two ways:

e Declare a DEVLEV array whose maximum length is determined by the number of elements in the initialization array on the
right-hand side.

DEVLEV DLNane[] = {{Devl, Level 1}, {Dev2, Level 2}, ...}
e Use MAXLEN to specify the maximum length of the array.
DEVLEV DLNane[MAXLEN] = {{Dev1l, Level 1}, {Dev2, Level 2}, ...}

In either case, the number of elements in the initialization array determines the effective length of the array. That value can be
determined at run-time by calling LENGTH_ARRAY. The maximum length available for a DEVLEV array can be determined by calling
MAX_LENGTH_ARRAY.

The individual elements of a level array can be referenced by their defined names (Dev1, Level1, Dev2, Level2, etc.) or alternatively,
by using array notation with the device-level array name. For example, the 3rd element in the device-level array, MyDLSet, would be
referenced by MyDLSet[3]. Furthermore, since a DEVLEV array is an array of DEVLEV structures, DEVLEV members can be
referenced using the dot operator notation such as MyDLSet[3].Device or MyDLSet[1].Level.

The index of the last member of the array for which an event notification was received can be determined by calling
GET_LAST(MyDLSet). This is useful for determining which device and level in an array is referenced to in a particular notification
message.

Language Reference Guide - NetLinx Programming 25

Subroutines

Subroutines

Overview
A Subroutine is a section of code that stands alone, and can be called from anywhere else in the program.

DEFINE_CALL Subroutines

The DEFINE_CALL is the standard method provided by NetLinx for defining subroutines.

DEFI NE_CALL ' <subroutine name> [(Paranil, Paran2,...)]
{

}
where (Param1, Param2, ...) refers to a comma-separated list of <datatype><variable> pairs. For example, "INTEGER Size" would
be one pair.

DEFINE_CALL names must not conflict with previously defined constants, variables, buffers, or wait names. Unlike identifiers,
DEFINE_CALL names are case sensitive.
A subroutine may accept parameters. To do this, each parameter and its type must be listed within the set of parentheses to the
right of the subroutine name, as shown below:

DEFI NE_CALL ' Read Input' (CHAR Buffer)[]
{
}

To invoke a user-defined subroutine, use the CALL keyword plus the name of subroutine and any required calling parameters.
CALL 'Read Input' (Buf1)
In NetLinx, DEFINE_CALL supports the RETURN statement (as shown in the following example), although return values are not
supported.
DEFI NE_CALL ' Read I nput' (CHAR Buffer)

(* statenments *)

if (nChars = 0)

{
RETURN /1 exit subroutine

(* read input *)

}
SYSTEM_CALL Subroutines
A SYSTEM_CALL subroutine is a special type of DEFINE_CALL subroutine defined in a separate program file called a LIB file with a
PROGRAM_NAME entry matching the subroutine name.

PROGRAM _NAME = ' COSX'

DEFI NE_CALL ' COSX' (FLOAT X)

(* body of subroutine *)

}
To invoke a system call, use the SYSTEM_CALL keyword followed by the name in single quotes and any calling parameters, as
shown below:

SYSTEM CALL ' COSX' (45)
System calls are resolved automatically at compile time, without requiring an INCLUDE instruction to include the system call source
file. For special cases where multiple copies of a system call are needed, an instance number can be specified in the call. The
compiler will compile a separate copy of the subroutine for each system call instance number. For example, the following
commands force the compiler to include two separate copies of COSX:

SYSTEM CALL[1] ' COSX (45)

SYSTEM CALL[2] ' COSX (60)
This technique could be useful in cases where a system call contains a wait instruction that conflicts when multiple calls to the
same subroutine were made during a single wait period.

Function Subroutines

A function is similar to a DEFINE_CALL, but is intended for use either standalone or in-line as an expression. Instead of requiring a
string literal for its name, it requires a name that follows the rules for naming constants and variables. This eliminates the need for
using the CALL keyword to invoke the subroutine. DEFINE_FUNCTION subroutines also differ from DEFINE_CALL by allowing values
to be returned using the RETURN statement (see below).

NOTE: The return type may only be one of the 8 intrinsic types. Strings, arrays, structures, classes and other user-defined types may
not be returned.

Syntax:

DEFI NE_FUNCTI ON [<return type>] FnNane[(Parani, Paran?,...)]
{

}
NOTE: You cannot declare and initialize variables in the same line. You must group the declarations first, followed by the initialization.

(* statements *)

Language Reference Guide - NetLinx Programming 26

Subroutines

Example:

DEFI NE_FUNCTI ON | NTEGER nyFunction (I NTEGER Var 0)

{
| NTEGER nByt es
STACK_VAR RESULT
nBytes = 0
RESULT = Var0 + nBytes
RETURN RESULT

}
NOTE: When it is a NetLinx function, a syntax where there appears a ([]), the () are NOT OPTIONAL but the [] are optional.

The DEFINE_FUNCTION subroutine can be called as a single programming statement. For example, the following syntax:

ReadBuf f er (Buf f er, Buf Si ze)

Can be used in an assignnent statenment such as:
Count = ReadBuffer (Buffer, Buf Si ze)

or as part of an expression such as:

| F (ReadBuf f er (Buf f er, Buf Si ze) > 0)

{

}
The rules pertaining to calling parameters are the same for DEFI NE_FUNCTI ON as they are for DEFI NE_CALL subroutines. The
parameter list must appear in parentheses to the right of the function name. If the function has no calling parameters a set of
parentheses must still be included. For example,

MyFunc() // calling a function with no paraneters

(* statenents *)

The return type may be omitted, as an alternate way of defining a subroutine. In this case the function cannot be used as part of an
expression or in an assignment statement.

DEFINE_FUNCTION also allows the use of the RETURN keyword that serves two purposes:

e To return prematurely from a function.

e To return a value from a function.
The format of the return statement is:

RETURN [<return val ue>]

If a return statement is encountered anywhere in the function, execution of the function is terminated immediately and the value (if
any) specified as the <return value> is returned to the caller. A function that returns a value through the RETURN keyword must be
declared with a return type. Conversely, a function that is declared without a return type cannot return a value. In the example
below, GetBufferSize returns an unsigned 16-bit integer, BufSize. The return type is indicated before the DEFINE_FUNCTION
keyword.

DEFI NE_FUNCTI ON | NTEGER Cet Buf f er Si ze()
LOCAL_VAR | NTEGER Buf Si ze = 0;

{

RETURN BUf Si ze;
}
To call this function and to retrieve the RETURN value, use the following syntax:
Buf Si ze = Get BufferSize()
where BufSize is declared to be of type INTEGER.

Even if a function returns a value, it is not necessary to assign the return value to a variable. Both forms of the following call are
valid. In the second case, the return value is simply thrown away.

Count = ReadBuffer (Buffer, Buf Si ze)

ReadBuf fer (Buffer, Buf Size) // return value is ignored
NOTE: The return type may only be one of the 8 intrinsic types (see Data Types). Strings, arrays, structures, classes and other user-
defined types may not be returned.

Calling Parameters

Parameters may be passed to any NetLinx function or subroutine. Calling parameters are simply variables or constants that
originate from the caller and are received by the function or subroutine being invoked. The NetLinx compiler passes all variables by
reference. This means that the variable the subroutine operates on is the same variable the caller passed. Any change made to a
variable passed as a calling parameter updates the value of the variable from the perspective of the caller. You can take advantage
of this pass by reference feature to return an updated value through a calling parameter rather than as the return value.
Constants, on the other hand, are passed by value. When this happens, a copy of the parameter is delivered to the subroutine. Any
change made to the variable representing the constant is lost once the function or subroutine finishes.

Function and subroutine declarations must include the type and name of each parameter expected. If the type is omitted, the
default type is assumed; arrays are CHAR type and non-array parameters are | NTEGER. To specify an array as a function or
subroutine parameter, one set of brackets for each array dimension must follow the variable name, as shown below:

DEFI NE_CALL ' Process Array' (CHAR Array[][1)
{

}

(* body of subroutine *)

Language Reference Guide - NetLinx Programming 27

Subroutines

The parameter Array is declared to be a 2-dimensional array, by including two sets of brackets after the name. For compatibility
with existing programs, the array dimensions may be specified inside the brackets. These dimensions are not required and are
ignored by the compiler. The NetLinx interpreter will do bounds checking on the array and generate a run-time error if the array
bounds are exceeded.
When calling a subroutine that takes an array as one of its parameters, pass only the name of the array as the calling parameter, as
shown below:

CHAR Buf fer[10][20]

CALL ' Process Array' (Array)
If dimensions are specified in the call statement, the compiler will interpret that as specifying a subset of the array. For example,
suppose Array were defined as a 3-dimensional array. The third table of that dimensional array could be passed to 'Process Array'
as follows:

CHAR Buffer[5][5][10]
CALL 'Process Array' (Array [3])

Subroutine Keywords

NetLinx supports the following Subroutine keywords:

DEFINE Keywords

CALL Use the CALL keyword and the name of the subroutine in single quotes to tell NetLinx to execute a subroutine. For
example, to execute the subroutine Lights Off, type the following where you want the CALL to occur:

CALL 'Lights Off'
When NetLinx executes the CALL, program execution jumps to the first line inside the braces of the DEFINE_CALL. The
subroutine is executed only once, and then NetLinx returns to the statement directly following the CALL statement.

DEFINE_CALL This keyword defines the implementation of a NetLinx subroutine.
DEFI NE_CALL ' <name>' [(P1,P2,...)]

/1 body of subroutine
}
The subroutine name cannot be a previously defined device name, constant, or variable, or a name assigned to a
buffer or a wait statement. DEFINE_CALL names are case sensitive and may contain spaces.

NOTE: Subroutines must be defined before they can be used. For this reason, DEFI NE_CALLs should appear
before the DEFI NE_START, DEFI NE_EVENT, and DEFI NE_PROGRAMSsections.

SYSTEM_CALL This keyword is similar to CALL except that the subroutine invoked using the SYSTEM_CALL keyword resides in a
special file called a library file. When this keyword is used, the compiler generates a call to the subroutine in the library
file and automatically includes the library file for compilation.

Language Reference Guide - NetLinx Programming 28

Compiler Directives

Compiler Directives

Overview

Compiler Directives are special types of instructions for the compiler. They won't produce any runtime code. Instead, they allow you
to instruct the compiler to conditionally compile parts of the code. See page 48 for a listing of Compiler Keywords.

NOTE: Refer to Appendix A - Compiler Warning & Errors section on page 156 for a listing of Compiler Messages.

Compiler Directives

#DEFINE

This directive defines a symbol to be used only by #IF_DEFINED and #IF_NOT_DEFINED directives.
Syntax:
#DEFI NE <synbol >
The name of the symbol must be unique among all other identifiers in the program. The symbol can be defined
anywhere in the program file but cannot be used in any statement that appears before it is defined.
/1 Specify the | NCLUDE_TOGGLE VI DEO PROJECTOR POWER FUNCTI ON conpi | er
// directive if there is a video projected connected to the controller
#DEFI NE | NCLUDE_TOGGLE VI DEO_PRQJECTOR _POWER_FUNCTI ON

#| F_DEFI NED | NCLUDE_TOGGLE_VI DEQO_PROJECTOR_POWER_FUNCTI ON
DEFI NE_FUNCTI ON t oggl eVi deoPr oj ect or Power ()

/1 code to toggle video projector power goes here

}
#END_| F

Notice in the above sample that the #DEFINE compiler directive is specified before the #IF_DEFINED and #END_IF
compiler directives. When #IF_DEFINED and #IF_NOT_DEFINED compiler directives are specified in include files,
the include file statements (defined by the #INCLUDE compiler directive) need to be declared after the #DEFINE
compiler directive statements.

#DISABLE_WARNING

This compiler directive disables a specified warning message from being displayed after the program is compiled.
Syntax:

#Dl SABLE_WARNI NG war ni ng#
For example, to disable the following warning:

WARNI NG C: \ Tenp\ AMXLoader\ AMX home Aut opatch Switcher. axi (1191): Cl10571: Converting type
[INTEGER] to [SINTEGER]

Add the following to the AXS file to disable the "C10571" warning:
#Dl SABLE_WARNI NG 10571

NOTE: Do not include the “C” prefix from the warning message.

#ELSE This directive specifies a counter condition; used optionally in conjunction with #IF_DEFINED and
#IF_NOT_DEFINED.
#END_IF This directive marks the end of an #| F_DEFI NED or #| F_NOT_DEFI NED code block.

#IF_DEFINED

This directive defines conditional compilation. The code following the #IF_DEFINED and before #ELSE (or before
#END_IF, if #ELSE is not present) is compiled only if a symbol is defined (see #DEFINE above). If a symbol is not
defined and the #ELSE directive is present, the code following #ELSE and before #END_IF is compiled instead.
#1 F_DEFI NED synmbol
/1 code bl ock
#ELSE
/1 code bl ock
#END_I F

#IF_NOT_DEFINED

Defines conditional compilation similar to #IF_DEFINED. The code following the #IF_NOT_DEFINED and before
#ELSE (or before #END_IF, if #ELSE is not present) is compiled only if symbol is not defined (see #DEFINE above).
If a symbol is defined and the #ELSE directive is present, the code following #ELSE and before #END_IF is
compiled instead.

#| F_NOT_DEFI NED synbol
/1 code bl ock

#ELSE
/1 code bl ock
#END_| F
#INCLUDE To include a file in a program, use the keyword #1 NCLUDE followed by the filename in single quotes:
DEFI NE_PROGRAM
(* Program statenents can go here *)
#1 NCLUDE ' TEST. AXI'
(* More program statenments can go here *)
When the compiler reaches the #I NCLUDE statement, it jumps into the specified file and continues compiling.
When it has reached the end of that file, it comes back to the line following the #I NCLUDE statement and
continues compiling.
#WARN Displays a warning message after the program is compiled. Its primary purpose is to remind you of certain

conditions related to the program.
#WARN ' This code is obsol ete’
#WARN ' This code is obsol ete’

Language Reference Guide - NetLinx Programming 29

Array Keywords

Array Keywords

Overview

NetLinx allows arrays of any data type supported by the language as well as arrays of user-defined structures and classes.
e If an initialization statement is included in the variable declaration, the array dimension is not required.

e If the array dimension is omitted, both the maximum and effective length is set to the length needed to hold the data
contained in the initialization string.

CHAR STRING] = 'character string'

W DECHAR WdeString[] = 'w de character string'

| NTEGER IntegerNunf 1 = {1, 2, 3, 4, 5}

SI NTEGER SINTEGERNun{] = {-1, 5, -6}

LONG LONGNuni] = {$EFFF, 0, 89000}

SLONG SLONGNun{] = {-99000, 50, 100, 100000}
FLOAT Fl oati ngNun{] = {1.0, 20000.0, 17.5, 80.0}
DOUBLE Doubl eNun{] = {1.0e28, 5.12e-6, 128000. 0}

String expressions can be used initialization statements only if each byte is separated by a comma:

CHAR sProjOn[] = {$02,'P','O,'N,$03}
The initialization statement for a single dimension character string is enclosed in single quotes, whereas data for other types is
enclosed in braces. In the case of a multidimensional character string, the strings in the initialization statement are separated by
commas and enclosed in braces.

Example:

DEFI NE_VARI ABLE
CHAR StringTable_3[3][5] =

{
{"STR1'},
{'STR 2'},
{'STR 3'},
}

For multidimensional array types, the data pertaining to each dimension is delimited using braces, as shown below:
INTEGER NunRD[1[1 = {{1, 3}, {2, 4}, {7, 8}}
(* This sets the dinensions to Nun2D[3][2] *)
The "=" operator can be used to assign a one dimensional array to another.
Arrayl = Array2
The one dimensional arrays must match type. The size of each dimension of the destination array must be greater than or equal to
the corresponding array being assigned; otherwise the contents of the array being assigned is truncated to fit into the destination
array. If a type mismatch is detected the compiler will issue an appropriate warning.
The lengths of an array are determined by calling LENGTH_ARRAY and MAX_LENGTH_ARRAY.
o LENGTH_ARRAY returns the effective length of a dimension of an array: the length set implicitly through array initialization
or explicitly through a call to SET_LENGTH_ARRAY.
e MAX_LENGTH_ARRAY is used to determine the maximum length of a dimension of an array.
Changing an element in array does not change its length. SET_LENGTH_ARRAY is used to change the effective length of an array
when necessary, such as when you've added elements via a FOR loop.
Example:

DEFI NE_VARI ABLE
I NTEGER Len

I NTEGER Lenl

I NTEGER Len2

INTEGER Arrayl[] = {3, 4, 5, 6, 7}
I NTEGER Array2[10] = {1, 2}

DEFI NE_START
Len = MAX_LENGTH ARRAY(Arrayl) /!l Len =5
Len = MAX_LENGTH_ARRAY(Array?2) /'l Len = 10
/1 LENGTH_ARRAY is called to determne the effective length of Arrayl
and Array2.
/1 This value is set automatically when the arrays are initialized.
Lenl = LENGTH_ARRAY(Arrayl) /'l Lenl =5
Len2 = LENGTH_ARRAY(Array?2) /1 Len2 = 2
FOR (Len = 1; Len <= Lenl; Len++)
{

ARRAY2[Len2+Len] = Arrayl[Len]

}
SET_LENGTH_ARRAY(Array2,Len2 + Lenl) // Set Array2 length to new |l ength end

Language Reference Guide - NetLinx Programming 30

Array Keywords

Multi-dimension arrays cannot be copied directly to another. Use FOR or WHILE loops to copy them at the lowest dimension.

Example:

DEFI NE_VARI ABLE

CHAR ARRAY1[2][10] = {{'hello '}, {' goodbye'}}
CHAR ARRAY2[2][10] = {{'i amthe "}, {"'walrus'}}

| NTEGER | NDEX
DEFI NE_PROGRAM
WAIT 20
{
FOR (I NDEX = 1; I NDEX <=2; | NDEX++)
{
ARRAY2[| NDEX] = ARRAY1[| NDEX]
}
SEND_STRI NG 0, " ARRAY2[1], ARRAY2[2] "
}
/1 end

Multi-Dimensional Arrays

Any of the single dimension array types listed above can be used to define an array of n-dimensions.
e A 2-dimensional array is simply a collection of 1-dimensional arrays;
e a 3-dimensional array is a collection of 2-dimensional arrays, and so forth.

Here's an example:

I NTEGER NumiDj 10] /1 [Col umm]
| NTEGER Nun2D) 5] [10] /1 [Rowj [Col unm]
I NTEGER Nur8D) 2] [5] [10] /1 [Tabl e] [Row [Col umm]

One way to view these arrays is to think of Num2D as being a collection of five Num1D's and Num3D as being a collection of two
Num2D's. When referencing elements of the above arrays:

NumiDf 1] refers to the 1st el ement

NunDf 1] refers to the 1st row

NuneDf 1] [1] refers to the 1st element of the 1st row
Nun8D[1] refers to the 1st table

Nun8D[1] [1] refers to the 1st row of the 1st table

NunBD[1] [1][1] refers to the 1st elenent of the 1st row of the 1st table

The following operations are legal:

Nun2D{ 2] = NunmlD

Nun@D[5] [5] = NumlD[5]

Nun8D{ 2] = Nun2D

Nun8D[2] [1] = NunlD

NunBD[2] [1][1] = NumiDf 1]

LENGTH_ARRAY and MAX_LENGTH_ARRAY are used to determine the effective and maximum lengths of multidimensional arrays, as
shown in the following examples:

I NTEGER Len
I NTEGER My3DArray[5] [3] [4]
Len = MAX_LENGTH ARRAY(My3Darray) /'l Len =5
Len = MAX_LENGTH ARRAY(My3Darray[1]) /Il Len = 3
Len = MAX_LENGTH ARRAY(My3Darray[1][1]) /1 Len = 4
I NTEGER Len
I NTEGER My3DArray[5][3][4] =
{
{
{1, 2, 3, 4},
{5,6,7,8},
{9, 10, 11}
}
{
{13, 14}
}
}
Len = LENGTH_ARRAY(My3Darr ay) /1 Len = 2, nunber of tables *)
Len = LENGTH_ARRAY(My3Darray|[2]) /1 Len = 1, nunber of rows in table 2 *)

Len LENGTH_ARRAY(My3Darray[1]1[3]) // Len 3, nunber of colums in table 1, row 3 *)

Language Reference Guide - NetLinx Programming 31

Array Keywords

Array Keywords

LENGTH_ARRAY

This function returns the effective length of a dimension of an array, implicitly through array initialization or array

manipulation operations, or explicitly through a call to the function SET_LENGTH_ARRAY.

LONG LENGTH_ARRAY (<type> Array[])
Parameters:
* <type>: May be any intrinsic or user-defined data type
* Array: An array of any type.

Result: The effective (or working) length of the array.
I NTEGER Len

INTEGER Arrayl[] = {3, 4, 5 6, 7}
INTEGER Array2[] = {1, 2}

I NTEGER My3DArray[5][3][4] =

{
{
{1,2,3,4},
{5,6,7,8},
{9, 10, 11}
}
{
{13, 14}
}
}
Len = LENGTH_ARRAY(Array1l) /l Len =5
Len = LENGTH_ARRAY(Array?2) /1 Len = 2

Len = LENGTH_ARRAY(M/3Dar r ay)
(* Len = 2, the nunber of tables *)
LENGTH_ARRAY(My3Darr ay[2])
(* Len = 1, the nunber of rows in table 2 *)
Len = LENGTH_ARRAY(M3Darray[1][3])
(* Len = 3, the nunber of colums in table 1,
See SET_LENGTH_ARRAY, on page 32, for more information.

Len

row 3 *)

Array Keywords

MAX_LENGTH_ARRAY

This function returns the maximum length of a dimension of an array.
LONG MAX_LENGTH ARRAY (<type> Array[])

Parameters:
* <type>: May be any intrinsic or user-defined data type.
* Array: An array of any type.

Result: The length of the specified dimension of Array.

FLOAT FPArray[10]
LONG NumArray[5] [3][4]

Len = MAX_LENGTH_ARRAY(FPArray) /1l Len = 10
Len = MAX_LENGTH_ARRAY(NumArr ay) /Il Len =5
Len = MAX_LENGTH_ARRAY(NumArray[1]) /'l Len = 3
Len = MAX_LENGTH_ARRAY(NumArray[1][1]) // Len = 4

SET_LENGTH_ARRAY

This function sets the effective length of a dimension of an array.
Set _Length_Array (<type> Array[], LONG Len)

Parameters:

« <type>: May be any intrinsic or user-defined data type.

* Array: Array of any type

« Len: Value to assign as the length
SET_LENGTH_ARRAY(NumAr r ay, 5)

Arrays are limited by their inability to have multiple data-types within one array. NetLinx supports Structures to remove this
limitation. Structures group different data types together as one data unit. Refer to the Structure Keywords on page 128 for more

information.

Language Reference Guide - NetLinx Programming

32

Audit Keywords

Audit Keywords

NetLinx supports the following Audit keywords:

Audit Keywords

AUDIT_NETLINX_
GENERIC_EVENT

This function generates an audit record to the persistent audit trail containing the specified NetLinx Device D:P:S and user
name to associate with the audit record and a text message to include in the audit record.
Syntax:
si nteger AUDI T_NETLI NX_GENERI C_EVENT(DEV devi ce, char usernane[], char nsg[])
Returns:

0 - Successful audit
-1 - Audit failed

AUDIT_NETLINX_
SESSION_EVENT

This function generates an audit record in the persistent audit trail containing the specified NetLinx Device D:P:S where the
login occurred, the username of the login and the audit type.
Syntax:

si nteger AUDI T_NETLI NX_SESSI ON_EVENT(DEV devi ce, char usernane[], integer audit_type)

Parameters:

» audit_type - Can be one of the following values:
0 - Audit Login success
1 - Audit Login fail
2 - Audit Logout

Returns:

0 - Successful audit
-1 - Audit failed

Language Reference Guide - NetLinx Programming 33

Authentication Keywords

NetLinx supports the following Authentication keywords:

Authentication Keywords

Authentication Keywords

VALIDATE_NETLINX_
ACCOUNT

This function validates the specified user name and password against the NetLinx Master Controller's internal user
account database. For the account to be valid the user name must exist with the matching password and the specified user
account must have been set up with ICSP Authorization.
Syntax:

si nteger VALI DATE_NETLI NX_ACCOUNT(CHAR USERNAME[], CHAR PASSWORD[], LOG N_I NFO_STRUCT | NFO

Parameters:
* username - A character array containing the user name to validate.
» password - A character array containing the password to validate.
+ info - A return structure of type LOGIN_INFO_STRUCT which contains the following values:
STRUCTURE LOG N_I NFO_STRUCT
{
| NTEGER FAI LED_LOG N_COUNT;
CHAR LAST_SUCCESSFUL_LOG N_DATE[46] ;
CHAR LAST_SUCCESSFUL_LOG N_LOCATI ON[46] ;
CHAR LAST_FAI LED LOG N_DATE] 46] ;
CHAR LAST_FAI LED_LOG N_LOCATI O\ 46] ;
}

Returns:
0 - Valid user account.
-1 - Username parameter is not a valid string
-2 - Password parameter is not a valid string
-3 - Invalid user account
-4 - User account does not have ICSP Authorization
-5 - Third argument is not a LOGIN_INFO_STRUCT
-6 -User account matching name is locked out
-7 - User account matching name has expired

VALIDATE_NETLINX_
ACCOUNT_WITH_
PERMISSION

This function validates the specified user name and password against the NetLinx Master Controller's internal user
account database. For the account to be valid the user name must exist with the matching password and the specified user
account must have been set up with ICSP Authorization.
Syntax:

si nteger VALI DATE_NETLI NX_ACCOUNT(CHAR USERNAME[], CHAR PASSWORD[], CHAR TYPE[],

CHAR PERM SSI ON[], LAST_LOG N_I NFO | NFO
Parameters:
* username - A character array containing the user name to validate.
» password - A character array containing the password to validate.
* type - The authorization type.
* permission - The permission type. Valid permission include: Configuration, Console, Diags, EncryptICSP, FTP, HTTP,

ICSP, Terminal, AuditLog, User1, User2, User3, and User4
* info - A return structure of type LAST_LOGIN_INFO which contains the following values:
STRUCTURE LAST_LOG N_I NFO

I NTEGER FAI LED LOG N_COUNT;

CHAR LAST_SUCCESSFUL_LOGI N_DATE] 46] ;
CHAR LAST_SUCCESSFUL_LOGI N_LOCATI ON[46] ;
CHAR LAST_FAI LED_LOG N_DATE] 46] ;

CHAR LAST_FAI LED_LOG N_LOCATI ON| 46] ;

}

Returns:
0 - Valid user account.
-1 - Username parameter is not a valid string
-2 - Password parameter is not a valid string
-3 - Invalid user account
-4 - User account does not have ICSP Authorization
-5 - Third argument is not a LOGIN_INFO_STRUCT
-6 - User account matching name is locked out
-7 - User account matching name has expired

Language Reference Guide - NetLinx Programming 34

Buffer Keywords

Buffer Keywords

NetLinx supports the following Buffer keywords:

Buffer Keywords

CLEAR_BUFFER This command sets the contents of the specified text buffer to zero; therefore, subsequent GET_BUFFER_CHAR
calls will not return anything. The CLEAR_BUFFER command does not modify the data in the buffer, just the
internal length value.

CLEAR_BUFFER Buf f er

CLEAR_BUFFER does not delete the data in the buffer; it only sets the length to zero.

CREATE_BUFFER This keyword creates a buffer and can only appear in the DEFINE_START section of the program.
CREATE_BUFFER DEV, Buffer

CREATE_BUFFER directs NetLinx to place any strings received from the specified device into the specified buffer

(character array). When strings are added to the buffer, the length of the buffer is automatically adjusted. If the

buffer is full, all bytes in the buffer are shifted to make room for the new string. A buffer can be manipulated in

the same way as a character array.

CREATE_MULTI_BUFFER This keyword is the same as CREATE_BUFFER except that it accepts strings from a range of devices. Two forms of
this command are supported.
The first form of the command is provided for backward-compatibility; it accepts two device numbers as the
range of devices.

CREATE_MULTI _BUFFER Fi rst Devi ce, LastDevice, Buffer

Parameters:
+ FirstDevice: First number in the range of devices.
+ LastDevice: Last number in the range of devices.
« Buffer: Text buffer to receive the strings.
Each command string placed in the multi-buffer has a three-byte header associated with it:
* The first header byte ($FF) marks the start of a new command string.
* The second header byte is either the number of the device or the index of the DEV[] member that received the
command string.
+ The third header byte is the length of the string.
$FF, device nunber or DEV[] index, length, <string>

The second form of the command takes a device array rather than the device number pair.
CREATE_MULTI _BUFFER Devi ceSet, Buffer

Parameters:

» DeviceSet: Set of devices for which the buffer will accept strings.

+ Buffer: Text buffer to receive the strings.

Each command string placed in the multi-buffer has a three-byte header associated with it.

+ The first header byte ($FF) marks the start of a new command string

* The second header byte is the index into th e Devi ceSet of the device that received the string.

+ The third header byte is the length of the string.

$FF, device nunber or DEV[] index, length, <string>

This command is not recommended for use in NetLinx due to its limitations. The main limitations to note are:

* For the first form of the command, using Fi r st Devi ce and Last Devi ce, only devices using the same port
and system will be allowed. The device in between the First Device and Last Device will be the sequential
device numbers using the same port and system (i.e. 1:1:0, 2:1:0, 3:1:0, etc...)

* For the second form of the command, using DeviceSet, only 255 devices will be allowed in the array. This is
required since only one byte is used to represent the DeviceSet index in the return string so it has an upper
limit of 255.

+ Strings from a device longer than 255 bytes will be broken up into multiple "multi" strings within the buffer.
For instance, if 300 characters are received from a port, the multi buffer will contain:

"$FF, <i ndex>, 255, <first 255 characters>, $FF, 45, <l ast 45 charact ers>"

The recommended replacement for CREATE_MULTI_BUFFER and GET_MULTI_BUFFER_STRING is to use a

DeviceSet and a DATA_EVENT to capture strings from multiple devices. See GET_MULTI_BUFFER_STRING for

more information.

An example is shown below:

DEFI NE_DEVI CE
Devl = 1:1:0
Dev2 = 1:2:0
Dev3 = 1:3:0
DEFI NE_VARI ABLE
DEV DeviceSet[] = {Devl, Dev2, Dev3}
| NTEGER Devi cel ndex
CHAR Devi ceSt ring[1000]
DEFI NE_EVENT
DATA_EVENT][Devi ceSet]
{
STRI NG
{
Devi cel ndex = GET_LAST(Devi ceSet)
Devi ceString = DATA. TEXT
}
}

See GET_MULTI_BUFFER_STRING, for more information.

Language Reference Guide - NetLinx Programming 35

Buffer Keywords

Buffer Keywords (Cont.)

GET_BUFFER_CHAR This keyword removes characters from a buffer.
Result = GET_BUFFER CHAR (Array)
Array may be either a character array or wide character array; the operation is identical in either case.
The result is a CHAR or WIDECHAR value depending on the variable type of Array.
GET_BUFFER_CHAR has a two-part operation:
1. Retrieve the first character in the buffer.
2. Remove the retrieved character from the buffer and shift the remaining characters by one to fill the gap.

GET_BUFFER_STRING This function removes characters from a buffer.
Result = GET_BUFFER_STRING (Array, Length)
Array may be either a character array or wide character array; the operation is identical in either case. Length is
the number of characters to remove.
Result is a CHAR or WIDECHAR value depending on the variable type of Array.
GET_BUFFER_STRING has a two-part operation:
1. Retrieve <length> number of characters from the buffer.
2. Remove the retrieved character from the buffer and shift the remaining characters up to fill the gap.

GET_MULTI_BUFFER_STRING | To access characters coming into a multi-buffer, you must first use GET_MULTI_BUFFER_STRING to transfer
these characters into another array. For example:
Device = GET_MULTI BUFFER STRING (Buffer, Array)

* The next string in the specified buffer is copied to the specified array.

+ All three header bytes are stripped before the string is copied.

+ If CREATE_MULTI_BUFFER was defined using a FirstDevice and LastDevice, the return value Device is the
device number (not the Port number) of the card that received the string.

» If CREATE_MULTI_BUFFER was defined using a DeviceSet, the return value Device is the device index into the
DeviceSet array of the card that received the string.

Language Reference Guide - NetLinx Programming 36

Channel Keywords

Channel Keywords

NetLinx supports the following CHANNEL keywords:

CHANNEL Keywords

COMBINE_CHANNELS See page 46.

OFF This keyword is used to turn off a channel or variable. If used with a variable, OFF sets it to zero.
OFF[DEVI CE, CHANNEL]

OFF[(DEVCHAN] 1)1

OFF[Vari abl e]

ON This keyword is used to turn a channel or variable on. If used with a variable, ON sets it to 1.
ON[DEVI CE, CHANNEL]
ON[(DEVCHAN[1)]

ON Vari abl e]
PUSH_CHANNEL See page 120.
RELEASE_CHANNEL See page 120.
PUSH_DEVCHAN See page 120.
RELEASE_DEVCHAN See page 120.
SET_VIRTUAL_CHANNEL_COUNT See page 122.
TOTAL_OFF This keyword turns a channel or variable off. Unlike OFF, TOTAL_OFF turns off the status of a channel or

variable that is in a mutually exclusive set.

Language Reference Guide - NetLinx Programming 37

Clock Manager Keywords

Clock Manager Keywords

NetLinx supports the following Clock Manager keywords:

Clock Manager Keywords

CLKMGR_SET_DAYLIGHT
SAVINGS_OFFSET

Sets the Daylight Savings Offset to the specified value.
CLKMGR_SET_DAYLI GHTSAVI NGS_OFFSET (CONSTANT CLKMGR_TI MEOFFSET_STRUCT T)

CLKMGR_DELETE_USER
DEFINED_TIMESERVER

Deletes the user-defined entry that has its IP-ADDRESS matching the parameter.
CLKMGR _DELETE_USERDEFI NED_TI MESERVER (CONSTANT CHAR | P[])

CLKMGR_GET_ACTIVE_
TIMESERVER

Populates the TI MESERVER structure with the currently active time server's data.
CLKMGR_GET_ACTI VE_TI MESERVER (CLKMGR_TI MESERVER_STRUCT T)
The function returns a negative SLONG value if it encounters an error.

NGS_OFFSET

CLKMGR_GET_DAYLIGHTSAVI

Populates the TI MEOFFSET structure with the current Daylight Savings Offset configured.
CLKMGR_GET_DAYLI GHTSAVI NGS_OFFSET (CLKMGR_TI MEOFFSET_STRUCT T)
The function returns a negative SLONG value if it encounters an error.

CLKMGR_GET_END_
DAYLIGHTSAVINGS_RULE

Gets a string representation of when Daylight Savings is supposed to end.
* The Fixed-Date rules have the form:
"fixed: DAY, MONTH, HH: MM SS"
with all fields as numeric except for the word "fixed".
* The Occurrence-Of-Day rules have the form:
"occur rence: OCCURRENCE, DAY- OF- VEEK, MONTH, HH: MM SS"
with all fields as numeric except for the word "occurrence".
» DAY-OF-WEEK translates as:
1=Sunday
2=Monday
3=Tuesday
4=Wednsday
5=Thursday
6=Friday
7=Saturday

CLKMGR_GET_RESYNC_
PERIOD

Returns the Clock Manager's re-sync period in minutes. The default setting is one (1) hour.
This setting has no effect if the Clock Manager mode is set to STANDALONE.

CLKMGR_GET_START_
DAYLIGHTSAVINGS_RULE

Gets a string representation of when Daylight Savings is supposed to START.
* The Fixed-Date rules have the form:
"fixed: DAY, MONTH, HH: MM SS"
with all fields as numeric except for the word "fixed".
* The Occurrence-Of-Day rules have the form:
"occurrence: OCCURRENCE, DAY- OF- WVEEK, MONTH, HH: MV SS*
with all fields as numeric except for the word "occurrence".
» DAY-OF-WEEK translates as:
1=Sunday
2=Monday
3=Tuesday
4=Wednsday
5=Thursday
6=Friday
7=Saturday

CLKMGR_GET_
TIMESERVERS

Populates the currently configured time server entries from the Clock Manager into the specified TIMESERVER
array.

CLKMGR_GET_TI MESERVERS (CLKMGR_TI MESERVER_STRUCT T[])
The function returns a negative SLONG value if it encounters an error, otherwise the return value is set to the
number of records populated into the CLKMGR_TIMESERVER_STRUCT array.

CLKMGR_GET_TIMEZONE

Returns Timezone as a string in the format:
UTq +| -1 HH: MM

CLKMGR_IS_
DAYLIGHTSAVINGS_ON

Returns FALSE/ 0 or TRUE/ 1.
The default setting is FALSE/O.

CLKMGR_IS_NETWORK_
SOURCED

Returns FALSE/ 0 or TRUE/ 1.
The default setting is FALSE/O.

CLKMGR_SET_ACTIVE_
TIMESERVER

Sets the time server entry that has the matching IP-ADDRESS to the IP parameter as the active time server
entry.
CLKMGR_SET_ACTI VE_TI MESERVER (CONSTANT CHAR | P[])

CLKMGR_SET_CLK_
SOURCE

Sets the source for the Clock Manager
CLKMGR_SET_CLK_SOURCE (CONSTANT | NTEGER MODE)
Can be set to:
CLKMGR_MODE_NETWORK
or
CLKMGR_MODE_STANDALONE

Language Reference Guide - NetLinx Programming

38

Clock Manager Keywords

Clock Manager Keywords (Cont.)

CLKMGR_SET_
DAYLIGHTSAVINGS_MODE

Sets Daylight Savings mode to Off or On.
CLKMGR_SET_DAYL| GHTSAVI NGS_MODE (CONSTANT | NTEGER ONOFF)
Can be set to:
ON TRUE
or
OFF/ FALSE

CLKMGR_SET_
DAYLIGHTSAVINGS_
OFFSET

Sets the Daylight Savings Offset to the specified value.
CLKMGR_SET_DAYLI GHTSAVI NGS_OFFSET (CONSTANT CLKMGR_TI MEOFFSET_STRUCT T)

CLKMGR_SET_END_
DAYLIGHTSAVINGS_RULE

Sets the END Daylight Savings rule to the specified string which must be in either the Fixed-Date format or the
Occurrence-0f-Day format.
CLKMGR_SET_END_DAYLI GHTSAVI NGS_RULE (CONSTANT CHAR RECORD[])
The function returns a negative SLONGvalue if it encounters an error.
The Fixed-Date rules have the form:
"fi xed: DAY, MONTH, HH: M\t SS"
with all fields as numeric except for the word "fixed"
(e.g.: "fixed:21,3,02:00:00" ===> March 21 @ 02:00:00AM).
The Occurrence-0f-Day rules have the form:
"occurrence: OCCURRENCE, DAY- OF- WEEK, MONTH, HH: MM SS"
with all fields as numeric except for the word "occurrence"
DAY-OF-WEEK translates as:
* 1=Sunday
* 2=Monday
* 3=Tuesday
* 4=Wednsday
* 5=Thursday
* 6=Friday
* 7=Saturday
(e.g.: "occurrence:3,1,10,02:00:00" ===> 3rd Sunday in October @ 02:00:00AM).

CLKMGR_SET_RESYNC_
PERIOD

Sets the re-sync period to the specified minute value.
CLKMGR_SET_RESYNC_PERI OD (CONSTANT | NTEGER PERI OD)
The upper bound is 480 minutes (i.e., 8 hours).

CLKMGR_SET_START_
DAYLIGHTSAVINGS_RULE

Sets the START Daylight Savings rule to the specified string which must be in either the Fixed-Date format or the
Occurrence-0f-Day format.
CLKMGR_SET_START_DAYLI GHTSAVI NGS_RULE (CONSTANT CHAR RECORD[])
The function returns a negative SLONG value if it encounters an error.
The Fixed-Date rules have the form:
"fixed: DAY, MONTH, HH: MM SS"
with all fields as numeric except for the word "fixed"
(e.g.: "fixed:21,3,02:00:00"===> March 21 @ 02:00:00AM).
The Occurrence-0f-Day rules have the form:
"occurrence: OCCURRENCE, DAY- OF- WEEK, MONTH, HH: MV SS*
with all fields as numeric except for the word "occurrence"
DAY-OF-WEEK translates as:
* 1=Sunday
* 2=Monday
* 3=Tuesday
* 4=Wednsday
* 5=Thursday
* 6=Friday
* 7=Saturday
(e.g.: "occurrence:3,1,10,02:00:00" ===> 3rd Sunday in October @ 02:00:00AM).

CLKMGR_SET_TIMEZONE

Sets the Timezone.

CLKMGR_SET_TI MEZONE (CONSTANT CHAR TI MEZONE[])
Input string must have the correct format:

UTd +| -1 HH: MM

Language Reference Guide - NetLinx Programming

39

Combine & Uncombine Keywords

Combine & Uncombine Keywords

Overview

The Axcess language supports the concept of combining several panels to make them behave as if they were one panel, in order to
simplify code. This feature allows the combination of functionally identical devices, such as identically programmed Touch Panels
and Softwire Panels. When the program references one of these devices, all other combined device arrays are also referenced. In
Axcess, device combine operations are done in the DEFINE_COMBINE section of the code, and can produce mixed results (any time
one or more panels are dropped off-line).

NetLinx further addresses the issues surrounding combining panels (and their associated channels and levels), and allows you to
combine and un-combine panels on the fly. The primary difference between the way that the Axcess and NetLinx languages handles
combine operations is that NetLinx utilizes the concept of the virtual device. A virtual device is a device that does not physically
exist but merely represents one or more devices.

NOTE: If you have combined Devices, Levels and/or Channels, they must be un-combined before they can be added as part of a new
COMBINE function.

Combining and Un-Combining Devices

To approach setting up combine and un-combine operations in NetLinx, let's first look at the way that combine operations are done
in the Axcess language.

Combining Devices

The example below illustrates how an Axcess program combines three touch panels to act as one.
DEFI NE_DEVI CE

TP1 = 128
TP2 = 129
TP3 = 130

DEFI NE_COVBI NE
(TP1, TP2, TP3)

DEFI NE_PROGRAM
RELEASE[TP1, 1]

{
}

NOTE: The code shown in the Axcess example will not work in NetLinx, due to incompatibilities between the languages (i.e. Axcess
does not allow virtual devices, which are required for Combine/Uncombine operations in NetLinx).

(*Do Sonet hi ng*)

This combines a common level to each of three devices TP1, TP2, and TP3 . If an input change occurs on any of the three devices,
Axcess sees the input as coming only from the first device in the list (TP1). If button [TP2,12] is pressed, Axcess will see the input
coming from [TP1,12] due to the combination. Likewise, any output change sent to any device in the list will automatically be sent
to all devices in the list. This includes level changes. For example, the statement ON [TP1,5@] will turn on channel 50 for all three
devices in the list.

Now let's see how the code example shown above would translate into NetLinx:

DEFI NE_COVBI NE
DEFI NE_DEVI CE

VI RTUAL1 = 33000

TP1 = 128
TP2 = 129
TP3 = 130

DEFI NE_COVBI NE
(VIRTUALL1, TP1, TP2, TP3)

DEFI NE_PROGRAM

RELEASE[VI RTUAL1, 1]

{

(*Do Sonet hi ng*)

}

Note the use of the virtual device (VIRTUAL1) in the above example. Combine operations in NetLinx require that the first device in
the list (the primary device) must be a virtual device. By specifying a virtual device as the primary device in a DEFINE_COMBINE
statement, NetLinx code can be written targeting the virtual device, but effectively operating on each physical device. Furthermore,
since a virtual device is not an actual physical device, the primary device cannot be taken off-line or removed from the system
(which avoids the potential problems that occurred in Axcess). The virtual device's address number must be in the range of 32768
to 36863.

Language Reference Guide - NetLinx Programming 40

Combine & Uncombine Keywords

The example above combines the three touch panel devices: TP1, TP2 and TP3. Whenever an input change occurs on any of the
three devices, NetLinx detects the input as coming only from VIRTUAL1. For example, if button [TP3, 5] is pressed, NetLinx sees
input coming from [VIRTUAL1, 5] as a result of the combination.

Output changes (including level changes) sent to any device in the list will automatically be sent to all devices in the list. For
instance, the statement: ON [VIRTUAL1, 50] turns on channel 50 on all three panels and OFF [VIRTUAL1, 10] turns off channel 10
on all three panels.

The example below illustrates the use of a device array (Dev[]), instead of specifying the individual devices (TP1, TP2, and TP3).
Device arrays can further simplify your code and allow you to dynamically combine/un-combine devices. Any input events for any
device in the array will appear to the program as coming from the virtual device. Output changes, directed to the virtual device or
any device in the array, are sent to all devices in the array. Here's a syntax example:
COMBI NE_DEVI CES (VI RTUAL1, TP1, TP2, TP3)
In addition to virtual devices and device arrays, NetLinx contains several new keywords for combine and un-combine operations:
e COMBINE_DEVICES, UNCOMBINE_DEVICES
e COMBINE_LEVELS, UNCOMBINE_LEVELS
o COMBINE_CHANNELS, UNCOMBINE_CHANNELS

NOTE: Refer to the Combining and Un-Combining Levels section on page 42 for more information.

Un-combining Devices

UNCOMBINE_DEVICES reverses the effect of COMBINE_DEVICES. All combines related to the specified virtual device are disabled. A
syntax example is:

UNCOMVBI NE_DEVI CES (VDC)
Parameters:

VDC The virtual device-channel passed to COMBINE_DEVICES.

COMVBI NE_DEVI CES (VDC, DCSet)

UNCOMVBI NE_DEVI CES (VDC)
The following NetLinx code example illustrates combining and un-combining the panels from the previous example:
NOTE: Input and output changes occurring on non-combined panels will not affect combined panels, and vice versa.

DEFI NE_DEVI CE
VI RTUAL1 = 33000

TP1 = 128
TP2 = 129
TP3 = 130
TP4 = 131

DEFI NE_PROGRAM

(* Activate dynami c device conbine*)
RELEASE[TP4, 1]

{

}

(*Renpve dynami c device conbi ne*)

COMBI NE_DEVI CES(VI RTUAL1, TP1, TP2, TP3)

RELEASE[TP4, 1]
{
UNCOVBI NE_DEVI CES(VI RTUAL1)

}

(*Pushes cone here when a conbine is active*)

RELEASE[VI RTUAL1, 1]

{ (*Do Sornet hi ng*)

: (*This will only see pushes when conbine is NOT active*)
RELEASE[TP1, 1]

{ (*Do Sonet hi ng*)

}

Language Reference Guide - NetLinx Programming 41

Combine & Uncombine Keywords

Combining and Un-Combining Levels

To approach setting up level combine and un-combine operations in NetLinx, let's first look at the way that level combine
operations are done in the Axcess language. The example below illustrates how an Axcess program would combine three Touch
Panel levels to act as one.

NOTE: The code shown in the Axcess example will not work in NetLinx, due to incompatibilities between the languages (i.e. Axcess
does not allow virtual devices, which are required for Combine/Uncombine operations in NetLinx).

DEFI NE_DEVI CE

TP1 = 128
TP2 = 129
TP3 = 130

DEFI NE_CONNECT_LEVEL

(TP1,1, TP2,1, TP3,1)
TP1, TP2, and TP3 are devices; this example combines Level 1 on each device. If a level change occurs on any of the three devices,
Axcess sees the level coming only from the first device in the list (TP1). Likewise, any level change sent to any device in the list will
automatically be sent to all devices in the list. Now let's see how the code example shown above would translate into NetLinx. This
is code that would function correctly within a NetLinx system, but still uses the Axcess-based.

DEFI NE_CONNECT_LEVEL

DEFI NE_DEVI CE
VI RTUAL1 = 33000

TP1 = 128
TP2 = 129
TP3 = 130

DEFI NE_CONNECT_LEVEL
(VIRTUALL, 1, TP1,1, TP2,1, TP3,1)

The example above combines the levels for the three touch panels: TP1, TP2 and TP3. Whenever a level change occurs on any of
the three devices, NetLinx detects the level as coming only from VI RTUAL1.

The example below illustrates the use of a device array (Dev[]), instead of specifying the individual devices (TP1, TP2 and TP3).
Device arrays further simplify code and allow you to dynamically combine/un-combine levels. Any input events for any device in the
array will appear to the program as coming from the virtual device. Output changes, directed to the virtual device or any device in
the array, are sent to all devices in the array. The syntax must follow one of these two forms:

DEFI NE_CONNECT_LEVEL
(Vdevicel, 1, DEVLEV [])

- or -
DEFI NE_CONNECT _LEVEL
(VDEVLEV, DEVLEV [])

Combining Levels

COMBINE_LEVELS connects a single device-level array (DEVLEV[]) to a DEVLEV array. Any element in a DEVLEV array appears to
come from the virtual device-level representing the group, and output to any element in a DEVLEV array is directed to all elements
in the group. Here's a syntax example:

COMBI NE_LEVELS (DEVLEV VDLSET, DEVLEV[] DLSETS)

Parameters:

VDLSET Virtual device-level. Each element will represent one device-level combine group.

DLSETS Device-level sets containing the device-level pairs to combine.
Corresponding elements in each set are combined with the corresponding element in the virtual device-level array.

Un-combining Levels
UNCOMBINE_LEVELS undoes the effect of COMBINE_LEVELS. All combines related to the specified virtual device-level are disabled.
NOTE: Input and output changes occurring on non-combined panels will not affect combined panels, and vice versa.

UNCOMBI NE_LEVELS (DEVLEV)
Parameters:

VDL The virtual device-level passed to COVBI NE_LEVELS.
DEVLEV The device-level passed to COVBI NE_LEVELS.

COVBI NE_LEVELS(VDL, DLSet)

UNCOVBI NE_LEVELS(VDL)
The NetLinx code example below illustrates how to dynamically combine and un-combine levels.

DEFI NE_DEVI CE
VI RTUAL1 = 33000

TP1 = 128
TP2 = 129
TP3 = 130
TP4 = 131

Language Reference Guide - NetLinx Programming 42

Combine & Uncombine Keywords

DEFI NE_PROGRAM
(*Activate dynanmic |evel conbine*)
RELEASE[TP4, 1]

{
COMBI NE_LEVELS(VI RTUAL1L, 1, TP1, 1, TP2, 1, TP3, 1)

}

(*Rermove dynamic | evel conbine*)
RELEASE[TP4, 1]
{

}
Combining and Un-Combining Channels

Combining Channels
COMBINE_CHANNELS connects a single virtual device-channel to one or more channels on another device (or devices). Stated
another way, COMBINE_CHANNELS combines a single virtual DEVCHAN or [DEV,CHAN] pair to one or more DEVCHANS or
[DEV,CHAN] pairs. Any element in a DEVCHAN[] set combined appears to come from the virtual device-channel representing the
group, and output to the virtual device-channel is directed to all elements in the DEVCHAN(] set.

COMVBI NE_CHANNELS (DEVCHAN VDC, DEVCHAN[] DCSets)

Parameters:

UNCOMBI NE_LEVELS(VI RTUAL1, 1)

VDC Virtual device-channel that represents one device-channel combine group.
DCSet s Device-channel array containing the device-channel pairs to combine. The VDC is combined with each element in the device-
channel array.
Un-combining Channels
UNCOMBINE_CHANNELS reverses the effect of COMBINE_CHANNELS. All combines related to the specified virtual device-channel

are disabled.
UNCOMVBI NE_CHANNELS (DEVCHAN VDC)
Parameters:
VDC The virtual device-channel passed to COVBI NE_CHANNELS.

UNCOVBI NE_CHANNELS (VDC)

NOTE: When using COMBINE_XXXX and UNCOMBINE_XXXX functions dynamically based upon a button event, the combining and
combining must be done on the release of the button (the active event must be complete before a COMBINE_XXXX or
UNCOMBINE_XXXX function is invoked).

The examples in the program below demonstrate the use of COMBINE_CHANNELS and UNCOMBINE_CHANNELS:

PROGRAM _NAME=" Conbi neChannel sExanpl e’

DEFI NE_DEVI CE /1 common devices for all exanples bel ow
dvTP = 128:1:0

dvREL10 = 301:1:0

dvli 010 = 310:1:0

vdvControl = 33000: 1: 0

/1 exanpl e of conbining a DEVCHAN set to a virtual [DEV, CHAN] pair
DEFI NE_VARI ABLE

DEVCHAN dc1[] = {{dvlOQ10, 1}, {dvREL10, 1}, {dvTP, 1}}

DEFI NE_EVENT
BUTTON_EVENT[dvTP, 11] /1 COMBI NE_CHANNELS 1
{
RELEASE:
{
COMVBI NE_CHANNELS (vdvControl, 1, dcl)
}
}
BUTTON_EVENT[dvTP, 12] /1 UNCOVBI NE_CHANNELS 1
{
RELEASE:

UNCOMBI NE_CHANNELS (vdvControl, 1)
}

}
BUTTON_EVENT[vdvControl,1] // this will work when the COVBI NE_CHANNELS above is invoked
{
PUSH:
{
TQ BUTTON. | NPUT]
}
}

Language Reference Guide - NetLinx Programming 43

/| exanpl e of conbining individual DEVCHANs to a virtual [DEV,CHAN] pair

DEFI NE_VARI ABLE
DEVCHAN dc2[] = {{dvl 010, 2}, {dvREL10, 2}, {dvTP, 2}}
DEFI NE_EVENT

BUTTON_EVENT[dvTP, 13] /1 COVBI NE_CHANNELS 2

RELEASE:

COMBI NE_CHANNELS (vdvControl , 2, dc2[1], dc2[2], dc2[3])

}
}
BUTTON_EVENT[dvTP, 14] I/ UNCOVBI NE_CHANNELS 2
{
RELEASE:
{

UNCOVBI NE_CHANNELS (vdvControl , 2)
}

Combine & Uncombine Keywords

BUTTON_EVENT[vdvContr ol , 2] /1 this will work when the COVBI NE_CHANNELS above is invoked

{
PUSH:

T BUTTON. | NPUT]
}
}

/1 exanpl e of conbining individual [DEV,CHAN] pairs to a virtual

DEFI NE_VARI ABLE

DEVCHAN dc3[] = {{dvl 010, 3}, {dvREL10, 3}, {dvTP, 3}}
DEFI NE_EVENT

BUTTON_EVENT[dvTP, 15] /1 COVBI NE_CHANNELS 3

{
RELEASE:

COMVBI NE_CHANNELS (vdvControl, 3,

[DEV, CHAN] pair

dc3[1] . DEVI CE,
dc3[1] . CHANNEL,
dc3[2] . DEVI CE,
dc3[2] . CHANNEL,
dc3[3] . DEVI CE,
dc3[3] . CHANNEL)
}
}
BUTTON_EVENT[dvTP, 16] // UNCOMVBI NE_CHANNELS 3
{
RELEASE:
{
UNCOVBI NE_CHANNELS (vdvControl , 3)
}
BUTTON_EVENT[vdvControl ,3] // this will work when the COVBI NE_CHANNELS above is invoked
{
PUSH:

TO[BUTTON. | NPUT]
}

}
/'l exanpl e of conbining a DEVCHAN set to a virtual DEVCHAN

DEFI NE_VARI ABLE

DEVCHAN vdc4 = {vdvControl, 4}

DEVCHAN dc4[] = {{dvlO10, 4}, {dvREL10, 4}, {dvTP, 4}}
DEFI NE_EVENT

BUTTON_EVENT[dvTP, 17] /1 COVBI NE_CHANNELS 4

RELEASE:

COVBI NE_CHANNELS (vdc4, dc4)

}
}
BUTTON_EVENT[dvTP, 18] /1 UNCOMBI NE_CHANNELS 4
{
RELEASE:
{
UNCOVBI NE_CHANNELS (vdc4)
}
}

Language Reference Guide - NetLinx Programming

44

Combine & Uncombine Keywords

BUTTON_EVENT[vdc4] /1 this will work when the COVBI NE_CHANNELS above is invoked

{
PUSH:

T BUTTON. | NPUT]
}
}

/'l exanpl e of conbining individual DEVCHANs to a virtual

DEFI NE_VARI ABLE

DEVCHAN vdc5 = {vdvControl, 5}

DEVCHAN dc5[] = {{dvlO10, 5}, {dvREL10, 5}, {dvTP, 5}}
DEFI NE_EVENT

BUTTON_EVENT[dvTP, 19] /1 COVBI NE_CHANNELS 5

RELEASE:

COMBI NE_CHANNELS (vdc5, de5[1], de5[2], de5[3])

}
}
BUTTON_EVENT[dvTP, 20] /1 UNCOVBI NE_CHANNELS 5
{
RELEASE:
{
UNCOMBI NE_CHANNELS (vdc5)
}
}
BUTTON_EVENT[vdc5] /1 this will work when the COMVBI NE_CHANNELS above is invoked
{
PUSH:
{
TO BUTTON. | NPUT]
}
}

/| exanpl e of conbining individual [DEV,CHAN] pairs to a virtual

DEFI NE_VARI ABLE
DEVCHAN vdc6 = {vdvControl, 6}
DEVCHAN dc6[] = {{dvl 010, 6}, { dVvREL10, 6}, {dvTP, 6}}
DEFI NE_EVENT
BUTTON_EVENT[dvTP, 21] // COMBI NE_CHANNELS 6
{
RELEASE:
{
COMVBI NE_CHANNELS (vdc6,
]. DEVI CE,
]. CHANNEL,
dc6[2] . DEVI CE,
1. CHANNEL,
] . DEVI CE,
] . CHANNEL)

BUTTON_EVENT[dvTP, 16] /1 UNCOVBI NE_CHANNELS 6

RELEASE:

{
UNCOMVBI NE_CHANNELS (vdc6)

}
}
BUTTON_EVENT[vdc6] /1 this will work when the COVBI NE_CHANNELS above is invoked
{
PUSH:
{
TQ BUTTON. | NPUT]
}
}
/1 end

Language Reference Guide - NetLinx Programming

45

Combine & Uncombine Keywords

COMBINE & UNCOMBINE Keywords

NetLinx supports the following COMBINE and UNCOMBINE keywords:

COMBINE & UNCOMBINE Keywords

COMBINE_CHANNELS

This command connects a single virtual device-channel to one or more channels on another device (or devices).
Any element in a DEVCHANT]] set appears to come from the virtual device-channel representing the group, and
output to the virtual device-channel is directed to all elements in the DEVCHANTJ] set.

COMVBI NE_CHANNELS (DEVCHAN VDC, DEVCHAN[] DCSet s)
Parameters:
* VDC: Virtual device-channel that represents one device-channel combine group.
* DCSets: Device-channel array containing the device-channel pairs to combine. Each element in each set is

combined with the virtual device-channel.

COMBINE_DEVICES

This keyword defines the combination of functionally identical devices, such as identically programmed touch
panels. When the program references one of these devices, all other combined devices in the array are also
referenced. The devices in a given array must be enclosed in parentheses. A virtual device is one that does not
actually exist but merely represents one or more physical devices.
The first device in the list (the primary device) must be a virtual device. By specifying a virtual device as the
primary device, NetLinx code can target the virtual device but have the effect of operating on each physical device.
Furthermore, since a virtual device is not an actual physical device, the primary device cannot be taken off-line or
removed from the system. An example of virtual devices is shown below:

COMBI NE_DEVI CES (VI RTUAL1, TP1, TP2, TP3)
The example above combines the three touch panel devices: TP1, TP2 and TP3. Whenever an input change occurs
on any of the three devices, NetLinx detects the input as coming only from VIRTUAL1. For example, if button [TP3,
5] is pressed, NetLinx sees input coming from [VIRTUAL1, 5] as a result of the combination.
Output changes (including level changes) sent to any device in the list will automatically be sent to all devices in
the list. For instance, ON[VIRTUAL1, 50] will turn on channel 50 on all three panels and OFF[VIRTUAL1, 10] will
turn off channel 10 on all three panels.
The example below is equivalent to the first except that it uses a device array (Dev[]) instead of specifying the
individual devices (TP1, TP2, and TP3). Any input events for any device in the array will appear to the program as
coming from the virtual device. Output changes directed to the virtual device or any device in the array are sent to
all devices in the array.

COMVBI NE_DEVI CES

(VIRTUAL1, Dev[])
When using a device array, the array can be manipulated at run-time to add or remove devices. A device that is
added to the array is combined with the others and a device that is removed is uncombined.

The process of adding or removing devices does not require the system to be powered down and restarted.

COMBINE_LEVELS

This keyword connects a single device-level array (DEVLEV[]) to a DEVLEV array. Any element in a DEVLEV array
appears to come from the virtual device-level representing the group, and output to any element in a DEVLEV array
is directed to all elements in the group.

COMBI NE_LEVELS (DEVLEV VDLSET, DEVLEV[] DLSETS)
Parameters:
* VDLSET: Virtual device-level sets; each element represents one device-level combine group.
* DLSETS: Device-level sets containing the device-level pairs to combine. Corresponding elements in each set are

combined with the corresponding element in the virtual device-level array.

DEFINE_COMBINE

This keyword defines the combination of functionally identical devices, such as identically programmed touch
panels. When the program references one of these devices, all other combined devices are also referenced. The
devices in a given combine must be enclosed in parentheses. The first device in the list (the primary device) must
be a virtual device.

DEFI NE_COMBI NE(VDevi ce, Panel 1, Panel 2, Panel 3)
The example below uses a device array (DEV[]) instead of specifying the individual devices (Panel1, Panel2, and
Panel3). Any input events for any device in the array will appear to the program as coming from the virtual device.
Output changes directed to the virtual device or any device in the set is sent to all devices in the array.

DEFI NE_COMBI NE(VDevi ce, DEV[])

See the Combine & Uncombine Keywords on page 40 for more information on virtual devices and device arrays.

DEFINE_CONNECT_LEVEL

This keyword defines level connections. A single connection is defined by listing the device-level pairs inside
parentheses. The first level in the list (the primary level) must be a virtual level (a level on a virtual device). A
virtual level does not actually exist but merely represents one or more levels on physical devices.
The example below combines the levels [Device1, Level1] and [Device2, Level2].

(VDevi ce, Level1l, Devicel, Levell, Device2, Levell)
The next example combines all levels in the device-level array. Changes to any level listed in the connection will
automatically be reflected in the other levels so that all level values are the same.

DEFI NE_CONNECT_LEVEL(VDevLev, MyDL[])

By specifying a virtual level as the primary level, NetLinx code targets the virtual level but operates on each
physical level. Since the primary level is virtual, the primary device (a virtual device) cannot be taken off-line or
removed from the system.

UNCOMBINE_CHANNELS

This keyword reverses the effect of COMBINE_CHANNELS. All combines related to the specified virtual device-
channel are disabled.

UNCOVBI NE_CHANNELS VDC
Parameters:
* VDC: The virtual device-channel passed to COMBINE_CHANNELS.

Language Reference Guide - NetLinx Programming 46

Combine & Uncombine Keywords

COMBINE & UNCOMBINE Keywords (Cont.)

UNCOMBINE_DEVICES This keyword reverses the effect of COMBINE_DEVICES. All combines related to the specified virtual device are
disabled.

UNCOMBI NE_DEVI CES VD
Parameters:
* VD: The virtual device passed to COMBINE_DEVICES.

UNCOMBINE_LEVELS This keyword reverses the effect of COVBI NE_LEVELS. All combines related to the specified virtual device-level
are disabled.

UNCOMBI NE_LEVELS VDL
Parameters:
* VDL: The virtual device-channel passed to COMBINE_LEVELS.

Language Reference Guide - NetLinx Programming 47

Compiler Keywords

Compiler Keywords

NetLinx supports the following Compiler keywords:

Compiler Keywords

_ DATE__ __DATE__is replaced by a string (mm/dd/yy) containing the date of compilation.
The example below sends the date of compilation to a variable text button on a touch panel.
SEND_COMVAND TP, "'IT',1,__DATE__"
_ FILE__ At compile time, this keyword is replaced with a string that contains the filename of the currently executing program file.
__LDATE__ At compile time, this keyword is replaced by a string (mm/dd/yyyy), containing the date of \compilation.

The example below sends the date of compilation to a variable text button on a touch panel.
SEND_COMMAND TP, "'!T',1,_ _LDATE__"

__LINE__ At compile time, this keyword is replaced by a constant that contains the line number the \keyword is on.
SEND_STRING 0, "1 TOA(__LINE_)"
_ NAME__ At compile time, this keyword is replaced by a string that contains the PROGRAM_NAME \description found on the first line of the
program.
_ TIME__ At compile time, this keyword is replaced by a string (hh:mm:ss) representing the time of \compilation.
The example below sends the time of compilation to a variable text button on a touch panel.
SEND_COMVAND TP, "'IT' ,1, _TIME__"

See page 48 for a listing of Compiler Keywords.
Refer to the Appendix A - Compiler Warning & Errors section on page 156 for a listing of Compiler Messages.

Language Reference Guide - NetLinx Programming 48

Conditional & Loop Keywords

Conditional & Loop Keywords

Overview

NetLinx supports the following types of conditional statements and loops:
e Conditional statements:
IF...ELSE statements
SELECT...ACTIVE statements
SWITCH...CASE statements
e Loops:
FOR statements
WHILE statements
LONG_WHILE statements

MEDIUM_WHILE statements are obsolete in NetLinx due to eliminating the timeout of WHILE loops. LONG_WHILE loops now differ
from WHILE loops in the way input change notifications are processed during the programming loop. WHILE, MEDIUM_WHILE and
LONG_WHILE statements are all accepted syntax to provide compatibility with existing Axcess programs.

Conditionals
IF...ELSE

The IF...ELSE statement provides a structure for conditional branching of program execution. If a condition evaluates to true, the
statement(s) associated with it are executed; otherwise, statements are not executed. An example is:
I F (<conditional expression 1>)

{

(* statements for condition 1 *)

ELSE | F (<conditional expression 2>)

{
(* statenments for condition 2 *)
}
ELSE
{ .
(* statenments for all other conditions *)
}

Regarding IF statements:
e ELSE IF is optional.

e Braces are generally recommended in all cases but are only required if multiple statements are assigned to a given
condition.

e IF statements may be nested to any number of levels.

SELECT...ACTIVE

The SELECT...ACTIVE statement provides a programming structure for selective execution of code blocks based on the evaluation
of a series of conditions. The first block whose ACTIVE condition evaluates to true is executed; the remaining blocks are ignored. If
no ACTIVE condition evaluates to true, no statements are executed. An example is:

SELECT

{ ACTI VE (<condition 1>)
{ (* statenments for condition 1*)
}
?CTI VE (<condition 2>)

(* statenents for condition 2*)
}
ACTI VE (<condition n>)

E\CTI VE (1)
(* statenents for condition n*)
) }
Regarding SELECT...ACTIVE statements:
e Only the statements associated with the first condition evaluated to true are executed.
e If no condition evaluates to true, no statements are executed.
e Braces underneath individual ACTIVE statements are required only if multiple statements are assigned to a given condition.

Language Reference Guide - NetLinx Programming 49

Conditional & Loop Keywords

SWITCH...CASE Statements

SWITCH...CASE statements provide selective execution of code blocks evaluated by a single condition. The value of the SWITCH
expression is tested against each CASE value (which must be a numeric constant or a string literal). If a match is found, the
statements associated with the CASE are executed. All other CASE statements are ignored. If no match is found, the DEFAULT case
statements (if any) are executed. The SWITCH expression is evaluated only once. The following is the structure for the
SWITCH...CASE statement:

SW TCH (<expr essi on>)

{
CASE <nuneric constant or string literal>:
(* statenents for CASE 1 *)
}
CASE <nuneric constant or string literal>:
(* statenents for CASE 2 *)
CASE <nuneric constant or string literal>:
(* statements for CASE n; there can be as mmny cases as necessary *)
DEFAULT <nuneric constant or string literal >:
(* statenents for DEFAULT case *)
}
}

The following rules apply to SWITCH...CASE statements:

e Only the statements associated with the first case that matches the value of the expression are executed.

e Multiple CASE statements can be stacked within the SWITCH...CASE statement.

e If the value matches one of the CASE statements, the statements associated with the stack will be executed.

e If no CASE matches the SWITCH expression, then the statements under the default case (if available) are executed. The
default statement must be the last case within the SWITCH...CASE, otherwise the remaining case statements will not
execute.

e All cases must be unique.

Braces should be used to bracket the statements in a case. They are required only if variables are declared within the case.

e The BREAK statement applies to the SWITCH and takes execution to the end of the SWITCH. Unlike C and C++, cases do

not fall through to the next case if a break is not used. Because of this, BREAK statements are not required between cases.
For example:

SW TCH (var)

CASE 1:
{

BREAK

(*statenents go here*)

}
CASE 3:
{

BREAK

(*statenments go here*)

}
CASE 5:
{

BREAK

(*statenments go here*)

}
DEFAULT:
{

BREAK
}

(*statenments go here*)

}
Loops

FOR Loops

The FOR loop structure allows you to define initialization statements; statements to execute after each pass through the loop and a
condition to test after each pass. If the condition evaluates to true, another pass is made. Otherwise, the loop is terminated. The
syntax of the FOR loop is as follows:

FOR (<INITIAL>; <condition>; <after pass>)

{
}

(* loop statenents *)

Language Reference Guide - NetLinx Programming 50

Conditional & Loop Keywords

Parameters:
<I NI TI AL> One or more statements that are executed one time before any FOR loop statements are executed. Each statement must
be separated with a comma; this is typically a FOR loop index initialization statement.
<condi ti on> A condition whose value is computed before each pass. If the condition evaluates to TRUE, the FOR loop statements are
executed. If the condition evaluates to FALSE, the loop is terminated.
<after pass> One or more statements that are executed after each pass through the statements. Each statement must be separated

with a comma. This is typically a statement that increments the FOR loop index.

The number of loop executions is usually stated at the beginning of the loop, unlike WHILE and LONG_WHILE loops:
FOR (COUNT=0 ; COUNT<10 ; COUNT++)
{

(* loop statenents *)
}
By defining the loop like this, you clearly see how it is initialized and incremented. No errors appear if you forget to initialize the
WHILE loop or counter. The FOR loop helps to insure proper structure.

WHILE Loops
A WHILE statement executes its statement block as long as its associated condition evaluates to true. The condition is evaluated
before the first pass through the statements. Therefore, if the conditional expression is never true, the conditional statements are
never executed.
The WHILE Loop structure:

WHI LE (<conditional expression>)

{

(* conditional statements *)
}
Regarding WHILE statements:

e Statements are executed repeatedly while the conditional expression evaluates to true.
e The condition is tested before each pass through the conditional statements.
e There is no timeout period - the NetLinx Controller handles bus updates through a separate execution thread, thereby
eliminating this potential problem.
LONG_WHILE statements

A LONG_WHILE differs from a WHILE statement in the way input change notifications are processed during the programming loop.
The system checks the input queue for a change notification message before execution of each loop, beginning with the second
loop. The message is retrieved if one exists. This message must be processed before another one is retrieved, either at the start of
the next loop or the beginning of the next mainline iteration. Otherwise, the message is lost.

The LONG_WHILE Loop structure:

LONG_WHI LE (<conditional expression>)
{

}

(* conditional statenents *)

e DEFINE_EVENT events are still processed even if mainline is in a LONG_WHILE.

e Special care should be taken to avoid spawning concurrent LONG_WHILEs via DEFINE_EVENT code. This can cause
excessive drag on system resources.

Conditional and Loop Keywords

NetLinx supports the following Conditional and Loop keywords:

Conditional and Loop Keywords

BREAK The BREAK command terminates execution of the current WHILE, LONG_WHILE, or FOR loop and resumes program
execution at the first instruction following that loop. BREAK also jumps to the end of a SWITCH statement.
WHI LE (<condition>)
{
/|l statenments
I F (<condition>)
{
BREAK // Go to statement: X =X+ 1
}
}
/1 Execution continues here after BREAK or
// after normal conpletion of the WH LE | oop.
X=X+1
DEFAULT Specifies the default case in a SWITCH...CASE statement. See SWITCH...CASE on page 52.
ELSE If the corresponding IF statement is false, the program will jump to the ELSE section of the IF...ELSE set of statements.

Language Reference Guide - NetLinx Programming 51

Conditional & Loop Keywords

Conditional and Loop Keywords (Cont.)

FOR

This keyword defines a FOR loop. The looping structure allows you to define initialization statements, statements to execute
after each pass through the loop and a condition to test after each pass. If the condition evaluates to true, another pass is
made; otherwise the loop is terminated.

FOR (<initial> <condition> <after pass>)

(* for loop statenents *)

}

IF

This keyword defines an | F statement; the | F statement provides conditional branching of program execution.
I F (<expression>)

/] statements
}ELSE I F (<expression>)
/1 statenents

{ELSE

I/ statenments
}
The ELSE IF and ELSE statements are optional. The braces delimiting the statements, associated with each condition, are
required only if there is more than one statement. For example, the following syntax is correct:
IF (X >0)
X=X-1

IF...ELSE

The | F statement provides a structure for conditional branching of program execution. If a condition evaluates to true, the
statement(s) associated with it are executed; otherwise statements are not executed.

Example:
I F (<conditional expression 1>)

(* statenents for condition 1 *)
ELSE | F (<conditional expression 2>)
(* statenments for condition 2 *)
]IéLSE

(* statenents for all other conditions *)
}
Regarding IF statements:
* ELSE IF and ELSE are optional
» Braces are only required if multiple statements are assigned to a given condition but are generally recommended in all
cases
» IF statements may be nested to any number of levels

INCLUDE

This keyword allows you to include programming instructions from an external file and have those instructions inserted at
any point in the program.

I NCLUDE ' <fi | enanme>'
The parameter filename can be any valid (long) filename. If the file extension is omitted, "AXI" is assumed. An INCLUDE
statement can appear anywhere in a program.
NOTE: There is no difference in functionality between the INCLUDE reserved identifier and the #INCLUDE
compiler directive. INCLUDE is supported for backward-compatibility to Axcess (see #INCLUDE on page 29).

SELECT...ACTIVE

This keyword statement provides a programming construct for selective execution of code blocks based on the evaluation of
a series of conditions.

SWITCH...CASE

This keyword statement provides a programming construct for selective execution of code blocks based on the evaluation of
a single condition.
SW TCH (var)

CASE 1:
{ | F(Var 2=1)
EBREAK /1 | F Var2=1 STOP EXECUTI ON
%statements go here if Var2 < > 1)
}CASE 3:
(statements go here)
}CASE 5:

(statenments go here)

}
DEFAULT:
{

}

(statements go here)

Language Reference Guide - NetLinx Programming 52

Conditional & Loop Keywords

Conditional and Loop Keywords (Cont.)

WHILE

This keyword executes its statement block as long as its associated condition evaluates to true. The condition is evaluated
before the first pass through the statements. Therefore, if the conditional expression is never true the conditional
statements will never be executed.

WHI LE (<conditional expression>)

{
}

(* conditional statenents *)

MEDIUM_WHILE

This keyword is obsolete in the new NetLinx system. The compiler will treat it as a WHILE keyword.

LONG_WHILE

This keyword is the same as a WHILE statement except that input messages are retrieved after each pass to allow the
LONG_WHILE statements to process the input.
LONG WHI LE (<conditional expression>) {(* conditional statements *)}

See the LONG_WHILE statements section on page 51 for more information.

FALSE

This keyword is a CHAR constant containing the value 0. While NetLinx does not support a BOOLEAN data type, zero is
considered false conditional expressions.

TRUE

This keyword is a CHAR constant and contains the value 1. While NetLinx does not support a BOOLEAN data type, an non-
zero value is considered true for conditional expressions.

Language Reference Guide - NetLinx Programming 53

Data Event Keywords

Data Event Keywords

NetLinx supports the following Data Event keywords:

Data Event Keywords

AWAKE

This keyword defines a section in a DATA event handler for processing AWAKE notifications.
This event is triggered when the master recognizes that a device on the bus has exited STANDBY state.
Once the device is AWAKE, communication to the device from the master can resume.

COMMAND

This keyword defines a section in a DATA event handler for processing SEND_COMMAND instructions.

HOLD

This keyword defines a section in a BUTTON event handler for processing HOLD events.

ONERROR

This keyword defines a section in a DATA event handler for processing ONERROR notifications.
Any error triggers an ONERROR event.

OFFLINE

This keyword defines a section in a DATA event handler for processing OFFLINE notifications.

This is one of the important aspects of the DATA_EVENT that is triggered when the master recognizes that a device has been
dropped off the bus.

ONLINE

This keyword defines a section in a DATA event handler for processing ONLINE notifications.
This is one aspect of DATA_EVENT that is triggered when the master recognizes that a device has been added to the bus.

In NetLinx, every device triggers an ONLINE event when the master is reset. This ensures that the device is initialized on startup and
that the device is initialized any time the device comes online.

REPEAT

This keyword may be used with the HOLD keyword to specify that the (hold button) event should be allowed to repeat.
See the Event Handler Keywords on page 74 for more information.

STANDBY

This keyword defines a section in a DATA event handler for processing STANDBY notifications.

This event is triggered when the master recognizes that a device on the bus has gone into a STANDBY state. While in standby state,
all communication to the device from the master is dropped.

Language Reference Guide - NetLinx Programming 54

Data Types and Conversion Keywords

Data Types and Conversion Keywords

Overview

NetLinx supports integers up to 32-bits and signed values to allow positive and negative values.

Intrinsic Data Types

The following Data Types are intrinsic to the NetLinx language:

Intrinsic Data Types

Keyword Data Type Sign Size Range

CHAR Byte Unsigned 8-bit 0 to | 255

WIDECHAR Integer Unsigned 16-bit |0 to | 65,535

INTEGER Integer Unsigned 16-bit |0 to | 65,535

SINTEGER Integer Signed 16-bit | -32,768 to | 32,767

LONG Long Integer Unsigned 32-bit 0 to | 4,294,967,295
SLONG Long Integer Signed 32-bit -2,147,483,648 to | 2,147,483,647
FLOAT Floating Point Signed 32-bit -3.40282346e+38 to | 3.40282346e+38
DOUBLE Double Precision Floating Point Signed 64-bit | -1.79769313e+308 to | 1.79769313e+308

Intrinsic Data Type Keywords

Intrinsic Data Type Keywords

CHAR CHAR is used to store single-byte values and character strings. This data type is used with ANSI character strings.
» Data Type: Byte

* Sign: Unsigned

*+ Size: 8-bit

* Range: 0 - 255

» Sample of Stored Values: 'a', 145, $FE, 'The quick gray fox'

WIDECHAR | WIDECHAR is an intrinsic data type representing a 16-bit unsigned integer. This data type is intended for use with Unicode fonts that
use 16-bit character codes (and most Far-eastern fonts).

+ Data Type: Integer

* Sign: Unsigned

+ Size: 16-bit

* Range: 0to 65,535

* Sample of Stored Values: "'OFF',500"

INTEGER INTEGER is the default variable value to store values up to and including 65535. This is the default data type if a non-array variable
is declared without a data type specified.

+ Data Type: Integer

* Sign: Unsigned

+ Size: 16-bit

* Range: 0to 65,535

* Sample of Stored Values: 512, 32468, 12

SINTEGER SINTEGER is used to store signed integer values both greater than and less than zero.
+ Data Type: Integer

* Sign: Signed

* Size: 16-bit

* Range: -32,768 to 32,767

* Sample of Stored Values: 24, -24, 568, -568

LONG LONG defines an intrinsic data type representing a 32-bit unsigned value. It is used to store large integer values greater than 65535.
+ Data Type: Long Integer

» Sign: Unsigned

» Size: 32-bit

* Range: 0 - 4,294,967,295

* Sample of Stored Values: 1000000, 2000046

SLONG SLONG defines an intrinsic data type representing a 32-bit signed integer. It is used to store signed large integer values less than -
32767 and greater than 32767.

+ Data Type: Long Integer

+ Sign: Signed

» Size: 32-bit

* Range:-2,147,483,648 to 2,147,483,647

* Sample of Stored Values: -1000000, 1000000, -2000000, 2000000

Language Reference Guide - NetLinx Programming 55

Data Types and Conversion Keywords

Intrinsic Data Type Keywords (Cont.)

FLOAT FLOAT defines an intrinsic data type representing a 64-bit signed floating-point value. It is used to store small real numbers with 5
digits of precision.

» Data Type: Floating Point

* Sign: Signed

* Size: 64-bit

* Range: -3.40282346e+38 to 3.40282346e+38

» Sample of Stored Values: 1.2345, 123.4512345e5, -16.3231415

DOUBLE DOUBLE defines an intrinsic data type representing a 64-bit (double precision) signed floating-point value. It is used to store large
real numbers with 15 digits of precision.

» Data Type: Double Precision Floating Point

* Sign: Signed

* Size: 64-bit

* Range: -1.79769313e+308 to 1.79769313e+308

* Sample of Stored Values: 1.23456789012345, 12,345,678.9012545, 3.14159265358979, -0.048512934

Structured Data Types

Structured Data Type Keywords

DEV A data type (structure) used to represent a specific device, port, and system. In NetLinx, the DEV structure is the actual (internal)
representation of a NetLinx device.

Example:
STRUCTURE DEV

I NTEGER Nunber

| NTEGER Port

I NTEGER System
}

NOTE: See the Device Arrays section on page 23 for more information.

DEVCHAN DEVCHAN defines a data type (structure) containing fields used to represent a specific device number, port, system, and channel.
Example:
STRUCTURE DEVCHAN

{
DEV Devi ce
I NTEGER Channel

}

NOTE: See the Device-Channels and Device-Channel Arrays section on page 24 for more information.

DEVLEV A data type (structure) containing fields used to represent a specific device number, port, system and level. This structure is used to
implement an array DEVLEV[].
Example:
STRUCTURE DEVLEV
{
DEV Device
| NTEGER Level
}

See the Device-Level Arrays section on page 24 for more information.

Combining and Uncombining Device/Channel Sets
Combining DEVCHAN sets is unique to NetLinx. The format for COMBINE_CHANNELS and UNCOMBINE_CHANNELS is:

SLONG COMBI NE_CHANNELS (<virtual DEVCHAN[]>, <DEVCHANL[]>, <DEVCHANZ[]>.)

SLONG UNCOVBI NE_CHANNELS (<virtual DEVCHAN[]>)
To explain the concept of combining DEVCHAN sets, it is necessary to understand how the DEVCHAN sets are arranged. Rather than
the DEVCHAN set being a set of like functions, such as a set of volume mute buttons across different devices, the DEVCHAN set
should be a group of different functions on the same device, such as 5 lighting presets on an AXU-MSP16. For example:

DEVCHAN dcMSP1 =

{{MBP1, PRESET1}, { MSP1, PRESET2}, { MSP1, PRESET3}, { MSP1, PRESET4}, { MSP1, PRESETS5} }

DEVCHAN dcMBP2 =

{{MBP2, PRESET1}, { MSP2, PRESET2}, { MSP2, PRESET3}, { MSP2, PRESET4}, { MSP2, PRESETS5} }

DEVCHAN dcMSP3 =

{{MBP3, PRESET1}, { MSP3, PRESET2}, { MSP3, PRESET3}, { MSP3, PRESET4}, { MSP3, PRESETS5} }
Similar to COMBINE_DEVICES and COMBINE_LEVELS, the first DEVCHAN set in a COMBINE_CHANNEL function needs to be
referenced to a Virtual Device, as shown below:

DEVCHAN dcVDEV =

{{ VDEV, PRESET1}, { VDEV, PRESET2}, { VDEV, PRESET3}, { VDEV, PRESET4}, { VDEV, PRESETS5} }
All of the DEVCHAN sets in the COMBINE_CHANNELS function must have the same number of array elements. The actual
COMBINE_CHANNELS statement is:

COMBI NE_CHANNELS (dcVDEV, dcMsPl, dcMsP2, dcMsP3)

The actual element positions of the DEVCHAN arrays are combined within the program. In essence, all of the PRESET1 channels are
handled through [VDEV,PRESET1] defined as dcVDEV[1].

Language Reference Guide - NetLinx Programming 56

Data Types and Conversion Keywords

NOTE: When using COMBINE_XXXX and UNCOMBINE_XXXX functions dynamically based upon a button event, the combining and
combining must be done on the release of the button (the active event must be complete before a COMBINE_XXXX or
UNCOMBINE_XXXX function is invoked).

Type Conversion

Although explicit type casting is not supported in NetLinx, the compiler is forced to do type conversion in situations where an
arithmetic assignment or other operation is defined with constants and/or variables having mixed data types. Type conversions will
occur under the following circumstances:

e A value of one type is assigned to a variable of another type.

e A value passed as a parameter to a subroutine does not match the declared parameter type.

e The value returned by a subroutine does not match the declared return type.

Type Conversion Rules

e If the expression contains a 32 or 64-bit floating-point variable or constant, all variables and constants in the expression
are converted to 64-bit floating point before resolving.

e If the expression contains only whole number value variables and constants, all variables and constants in the expression
are converted to 32-bit integers before resolving.

e If type conversion is required for an assignment or as a result of a parameter or return type mismatch, the value is
converted to fit the type of the target variable. This may involve truncating the high order bytes(s) when converting to a
smaller size variable, or sign conversion when converting signed values to unsigned or vice versa.

Conversion Keywords

NetLinx supports the following Conversion keywords:

Conversion Keywords

ATOI ATOI converts a character representation of a number to a signed 32-bit integer. It recognizes a character
representation of a value that would be within the ranges of the data types: INTEGER, SINTEGER, and SLONG.
Syntax:

SLONG ATO (CHAR STRING 1)
Parameters:
* STRING - string containing the character representation of the integer. Valid input characters are "0" through "9"

and the sign designators ("+" and "-"). If no valid characters are found, zero is returned as a result.

Result:
* A 32-bit integer representing the converted string.
* Any non-numeric characters in the string are ignored.
* ATOI returns the value representing the first complete set of characters that represents an integer.

NOTE: While you can pass in larger values, ATOI will truncate any value outside the range -2147483648
to 2147483647 to the value -2147483648 (if negative) or 2147483647 (if positive).

Example:
Vol = ATO (' Vol ume=100%) // Vol = 100
Num = ATO (' -3758') /1 Num =-3758
ATOF Converts a character representation of a number to a 64-bit floating-point value. ATOF recognizes a character
representation of a value that would be within the ranges of all intrinsic data types, with the exception of CHAR.
Syntax:
FLOAT ATOF (CHAR STRING 1)

Parameters:

* STRING: An input string containing the character representation of the floating-point number. Valid input
characters are "0" through "9", ".", the sign designators ("+" and "-"), and the exponent ("e" or "E"). If no valid
characters are found, zero is returned as a result.

Result:

* 64-bit floating-point number representing the converted string.
* Any non-numeric characters in the string are ignored.
+ ATOF returns the value representing the first complete set of characters that represents a floating-point value.

NOTE: When assigning the result to a DOUBLE the effective range is £2.22507E-1 to £1.79769E+308.

Example:
Num = ATOF('-1.25e-3")// Num = -0.00125

Language Reference Guide - NetLinx Programming 57

Data Types and Conversion Keywords

Conversion Keywords (Cont.)

ATOL

ATOL converts a character representation of a number to a signed 32-bit integer. ATOL recognizes a character

representation of a value that would be within the ranges of the data types: INTEGER, SINTEGER, and SLONG.

Syntax:

SLONG ATOL (CHAR STRING 1)

Parameters:

* STRI NG- string containing the character representation of the integer. Valid input characters are "0" through "9"
and the sign designators ("+" and "-"). If no valid characters are found, zero is returned as a result.

Result:

* A 32-bit integer representing the converted string.

* Any non-numeric characters in the string are ignored.

« ATOL returns the value representing the first complete set of characters that represents an integer.

NOTE: While you can pass in larger values, ATOI will truncate any value outside the range -2147483648
to 2147483647 to the value -2147483648 (if negative) or 2147483647 (if positive).

Example:
Vol = ATOL(' Vol une=100%) // Vol = 100
Num = ATOL('-3758') /1 Num =- 3758

CH_TO_wC

This keyword converts a CHAR array to a wibecHAR array.
W DECHAR[] CH TO WC(CHAR STRINGF 1)

Parameters:

* STRING - a character string to be converted.

Result:

* A WIDECHAR array containing the values from the CHAR array.
W DECHAR wcData[] = CH TO WX(' ASCI | ')

FTOA

This function converts a 64-bit floating-point value to an ASCII string containing the decimal representation of the
number.
CHAR[] FTOA (DOUBLE Num)
Parameters:
* Num: 64-bit Floating-point number to convert to a decimal string.
Result:
* Character string that contains the decimal representation of the specified floating point number, rounded to 6
digits of precision.
* The character representation uses exponents as necessary, according to the following rule:
For 0.0001 <= |n| < 1000000, FTOA returns the result in non-exponential form; otherwise, it returns the result in
exponential form.
Examples:
n=1000000 returns '1E+06'
n=1234567 returns '1.23457E+06'
n=-0.001 returns '-0.001"
n=0.00045 returns '0.00045'
n=0.000045 returns '4.5E-05'
n=123.45678 returns '123.457'

HEXTOI

This function converts an ASCII string containing the hexadecimal representation of a number to an unsigned 32-bit
integer.
LONG HEXTO (CHAR STRING])
Parameters:
* STRING: Hexadecimal formatted string to be converted to an integer.
Result:
* 32-bit unsigned integer representing the converted string.
* Any non-hexadecimal characters in the string are ignored.
* HEXTOI returns a value representing the first complete set of characters that represents an integer.
* Valid characters are "0" through "9", "A" through "F" and "a" through "f".
» If no valid characters are found, zero is returned as a result.
Example:
Num = HEXTO (' 126EC) /1 Num = 75500

ITOA

This function converts a 32-bit signed integer to a decimal ASCII string.
CHAR[] ITOA (LONG Num

Parameters:

* Num: The 32-bit unsigned integer to convert to a decimal string.

Result:

A character string that contains the decimal representation of the specified integer.
STRING = | TOA(501) /1 STRING = '501'

Language Reference Guide - NetLinx Programming 58

Data Types and Conversion Keywords

Conversion Keywords (Cont.)

FORMAT Provides a mechanism similar to 'C's pri nt f statement for formatting the display of numbers. This function is
similar to | TOA but is infinitely more powerful.

CHAR[] FORMAT(CHAR For mat Li ne[], CHAR Val ue) CHAR[] FORMAT(CHAR For mat Li ne[],

W DECHAR Val ue) CHAR[] FORMAT(CHAR For nat Li ne[], | NTEGER Val ue) CHAR[] FORMAT(CHAR
For mat Li ne[],

SI NTEGER Val ue) CHAR[] FORMAT(CHAR For mat Li ne[], LONG Val ue) CHAR[] FORMAT(CHAR

For mat Li ne[],

SLONG Val ue) CHAR[] FORMAT(CHAR For mat Li ne[], FLOAT Val ue) CHAR[] FORMAT(CHAR

For mat Li ne[],

DOUBLE Val ue)

Parameters:

» FormatLine: A formatted string of text that defines how the (return) string should be formatted. The format string
contains plain characters and a conversion specification. Plain characters are copied, as is, directly. Conversion
characters conform to the following format:

% flags][wi dth][.prec]type
flags: Output justification, numeric signs, decimal points, trailing zeros, octal and hex prefixes. By default,
output is right justified. Use a '-' to left justify as in %-5d.
- : Causes left justification, padding with blanks
0: Zeros are used to pad instead of spaces if a field length is given.
+: Output always begins with + or -.
Blank: Positive values begin with a blank.
width: Minimum number of characters to print. If the output would be less than this width, it is padded with
spaces to be width characters wide. If the output is larger than width the entire output is provided (i.e. it is not
truncated).
prec: Maximum number of characters to print or number of digits to the right of the decimal point for a float or
double type.
type: Conversion type:
c: Value is treated as an integer, and presented as the character with that ASCII value.
d: Value is treated as a signed integer, and presented as a decimal number.
£: Value is treated as a double, and presented as a floating-point number.
o: Value is treated as a signed integer, and presented as an octal number.
u: Unsigned integer.
x: Value is treated as an integer and presented as a hexadecimal number (with lowercase letters).
X: Value is treated as an integer and presented as a hexadecimal number (with uppercase letters).
%: A literal percent character.

* Value: The value to be converted to a string. The result is a formatted text string.

f Temperature = 98. 652

STR = FORMAT(' The current tenperature is 93.2f',fTenperature)

/1 Displays "The current tenperature is 98.65"

The table below shows some examples of the output of FORMAT for several different format lines and values:

FORMAT Statement Result of FORMAT function
FORMAT(' % 5. 2f ', 123. 234) '123. 23"
FORMAT(' 9. 2f ', 3. 234) '3.23
FORMAT(' %+4d' , 6) ' 46

The result is a formatted text string.

f Tenperature = 98. 652

STR = FORMAT(' The current tenperature is 9%3.2f',fTenperature)
I/ Displays "The current tenperature is 98.65"

ITOHEX This function converts a 32-bit unsigned integer to an ASCII string containing the hexadecimal representation of the
number.
CHAR[] | TOHEX (LONG Num)
Parameters:
* Num: The 32-bit unsigned integer to convert to a hexadecimal string.
Result:
A character string that contains the hexadecimal representation of the specified integer.
STRI NG = | TOHEX(1000) /1 STRING = ' 3E8'
RAW_BE This routine takes an intrinsic variable and converts it into a Character Array in Big Endian Format representing the
variable.

CHAR[] RAWBE(IntrinsicVariable)

RAW_LE This routine takes an intrinsic variable and converts it into a Character Array in Little Endian Format representing the
variable.

CHAR[] RAWLBE(IntrinsicVariable)

NOTE: NetLinx also provides a set of Encode & Decode keywords. See Encode / Decode Keywords on page 70 for details.

Language Reference Guide - NetLinx Programming 59

DEFINE Keywords

Overview
NetLinx has two methods for creating subroutines: DEFINE_CALL and DEFINE_FUNCTION.

DEFINE_CALL

DEFINE_CALL is intended to run segments of code that are repeated throughout the program, but don't require a return value. For
example, this DEFINE_CALL creates a macro to lower a screen, turn on the projector, and set the lights to Preset 1. The subroutine
executes three commands and no values are returned to the program.

DEFI NE_CALL ' PRESENTATI ON MACRO

SYSTEM CALL [1] 'SCREEN1' (O, O, 1, O, SCREEN, 1, 2, 3, 0)
SEND_STRI NG VPRQJ, "' PON , $0D, $0A"
SEND_STRI NG RADI A, "' 1B', $0D"
}
The NetLinx compiler passes all variables by reference. This means that the variable the subroutine operates on is the same variable
the caller passed. Any change made to the variable, passed as a calling parameter, updates the variable's value from the caller's
perspective. You can take advantage of this pass by reference feature by returning an updated value through a calling parameter
rather than as the return value. Constants, on the other hand, are passed by value. When this happens, a copy of the parameter is
delivered to the subroutine. Any change made to the variable representing the constant is lost once the function or subroutine is
lost. To specify an array as a function or subroutine parameter, one set of brackets for each array dimension must follow the
variable name, as shown in the following example:
DEFI NE_CALL ' READ | NPUT' (CHAR BUFFER[][])
{

(* body of the subroutine *)
}
The parameter BUFFER is declared to be a two-dimensional array by including two sets of brackets after the name. For compatibility
with existing programs, the array dimensions may be specified inside the brackets. These dimensions, however, are not required
and are ignored by the compiler. The NetLinx Interpreter will do bounds checking on the array and generate a run-time error if the
array bounds are exceeded.

NOTE: Subroutines must be defined before they can be used. For this reason, DEFINE_CALLS should appear before the
DEFINE_START, DEFINE_EVENT, and DEFINE_PROGRAM sections.

DEFINE_FUNCTION

DEFINE_FUNCTION provides a way to return a value to a statement. It has the same functionality as a DEFINE_CALL. The
DEFINE_FUNCTION is used in-line in a statement, where a DEFINE_CALL must be used as a standalone statement. The basic
structure is:

DEFI NE_FUNCTI ON [<return type>] <nane>[(<paranil>, <paran2>, ...<parameN>)]
{

}
The following DEFI NE_FUNCTI ON creates a subroutine to cube a number and returns a LONGinteger value:

DEFI NE_FUNCTI ON LONG CUBEI T (LONG VALUE)

(* statements *)

STACK_VAR RESULT
RESULT = VALUE * VALUE * VALUE
RETURN RESULT

DEFI NE_PROGRAM
PUSH TP1, 1]

CUBED_VAL = CUBEIT (3)
(* CUBED_VAL = 27 *)

Language Reference Guide - NetLinx Programming 60

DEFINE Keywords

DEFINE_CONSTANT

The standard format for DEFINE_CONSTANT is:

<constant nanme> = <constant expr essi on>

NetLinx allows variables to be defined as constants in the DEFINE_VARIABLE section of the program or module, and in the
LOCAL_VAR section of a DEFINE_CALL or a DEFINE_FUNCTION. The scope of the constant extends throughout the module in which
it is defined. If the DEFINE_CONSTANT section appears in the main program or in an include file, the constant's scope extends
globally throughout the program. DEFINE_CONSTANT accepts data in the following formats::

DEFINE_CONSTANT Data Formats

Type Format Example
Decimal Integer 0000 1500
Hexadecimal Integer $000 $DE60
Floating Point 000.0 924.5
Exponential Notation 0.0e0 . 5e-12
Character 'c' or <char code> "R or 255
String Literal 'ssss’ ' Rever se'

DEFINE Keywords

DEFINE Keywords

DEFINE_CALL This keyword defines the implementation of a NetLinx subroutine.
DEFI NE_CALL ' <nane>' [(P1,P2,...)]

/1 body of subroutine
}
The subroutine name cannot be a previously defined device name, constant, or variable, or a name assigned to a
buffer or a wait statement. DEFINE_CALL names are case sensitive and may contain spaces.
Subroutines must be defined before they can be used. For this reason, DEFINE_CALLs should appear before the
DEFINE_START, DEFINE_EVENT, and DEFINE_PROGRAM sections.

DEFINE_COMBINE This keyword defines the combination of functionally identical devices, such as identically programmed touch panels.
When the program references one of these devices, all other combined devices are also referenced. The devices in a
given combine must be enclosed in parentheses. The first device in the list (the primary device) must be a virtual
device.

DEFI NE_COWBI NE(VDevi ce, Panel 1, Panel 2, Panel 3)

The example below uses a device array (DEV[]) instead of specifying the individual devices (Panel1, Panel2, and
Panel3).
Any input events for any device in the array will appear to the program as coming from the virtual device. Output
changes directed to the virtual device or any device in the set is sent to all devices in the array.

DEFI NE_COMBI NE(VDevi ce, DEV[])

See the Combine & Uncombine Keywords on page 40 for more information on virtual devices and device arrays.

DEFINE_CONNECT_LEVEL | This keyword defines level connections. A single connection is defined by listing the device-level pairs inside
parentheses. The first level in the list (the primary level) must be a virtual level (a level on a virtual device). A virtual
level does not actually exist but merely represents one or more levels on physical devices. The example below
combines the levels [Device1, Level1] and [Device2, Level2].

(VDevice, Levell, Devicel, Levell, Device2, Level1l)
The next example combines all levels in the device-level array.
Changes to any level listed in the connection will automatically be reflected in the other levels so that all level values
are the same.

DEFI NE_CONNECT_LEVEL(VDevLev, M/DL[1)
By specifying a virtual level as the primary level, NetLinx code targets the virtual level but operates on each physical
level. Since the primary level is virtual, the primary device (a virtual device) cannot be taken off-line or removed from
the system.

DEFINE_CONSTANT This keyword defines program constants; the value of a constant cannot be changed within the program.
DEFI NE_CONSTANT
PLAY = 1
STOP = 2
STRI NG=' HELLO
Refer to the DEFINE_CONSTANT section on page 61 for more information.

DEFINE_DEVICE This keyword defines the devices referenced in the program.
DEFI NE_DEVI CE

TP1 = 128:1:0// device nunber = 128, port = 1, system= 0
TP2 = 129:1:0// device nunber = 129, port = 1, system= 0
TP3 = 130:1:0// device nunber = 130, port = 1, system= 0
VCR1 = 10:1:0 // device nunber = 10, port = 1, system= 0
VCR2 = 11:1:0 // device nunber = 11, port = 1, system= 0

Devices can be specified by a single device number such as "Tp = 128" or as a fully-qualified device specification
suchas"Tp = 128:1:0"

Language Reference Guide - NetLinx Programming 61

DEFINE Keywords

DEFINE Keywords (Cont.)

DEFINE_EVENT

This keyword provides the basis for the construction of the event table, which is where event-handling code is placed.
When NetLinx receives an incoming event, the event table is searched for a handler for that event.
A handler is a block of code that performs the necessary processing for an event notification received from a given

device (and possibly associated with a particular channel). See the Event Handler Keywords on page 74 for more
information.

DEFINE_FUNCTION

This keyword defines the implementation of a NetLinx function.
DEFI NE_FUNCTI ON [<return type>] FnName(P1, P2,...)
{

}
The return type is optional and can be any intrinsic data type or array of intrinsic types that NetLinx supports except a
structure or an array of structures. The function name must not be a previously defined constant or variable or a
name assigned to a buffer, a wait, DEFINE_CALL, or Function. Function names are not case sensitive. See the
DEFINE_FUNCTION section on page 60 for more information.

/1 function statenents

DEFINE_LATCHING

This keyword section is where latching channels and variables are defined. A latching channel is one that changes its
state once per activation. If a latching channel is activated by a TOkeyword, it changes its state. When the TOis
stopped by releasing the button that started it, the channel does not go back to its previous state. The status of a
latching channel (that is not part of a mutually exclusive group) will always reflect the on/off state of the channel.

In the following example, the device-channel [RELAY, SYSTEM_POWER] is defined as latching. The next statement uses
the double periods (..) to define a range of VCR channels as latching. In the last statement, the variable VAR1 is
defined as latching.

DEFI NE_LATCHI NG

[RELAY, SYSTEM POVER]

[VCR, PLAY]..[VCR REW ND|

VARL

DEFINE_MODULE

This keyword declares a module that will be used by either the main program or another module. It is the counterpart
to the MODULE_NAME entry that appears as part of the implementation of the module.
DEFI NE_MODULE ' <npdul e nanme>' | nstanceNane(<paraneter |ist>)
Parameters:
¢ <module name>: The name of the module as specified in the MODULE_NAME statement in the module
implementation file.
« InstanceName: The name to assign to the instance of the module.
* <parameter list>: The list of parameters available to the module.

DEFINE_MUTUALLY_
EXCLUSIVE

When a channel is turned on in a mutually exclusive set, it activates its physical output as long as the button is
pressed. When the button is released, the physical output stops. Even after the physical output stops, the feedback
still indicates the channel is on until another channel in the mutually exclusive set is activated. The status remains on
to indicate which channel in the set was activated last (last button pushed feedback). When a channel or variable in a
mutually exclusive set is activated, all other members of the set are turned off beforehand (break before make logic).
Members of a mutually exclusive set are placed in parentheses underneath the DEFINE_MUTUALLY_EXCLUSIVE
keyword. The double period (..) specifies a range of channels on the particular device to be defined as mutually
exclusive.

DEFI NE_MJTUALLY_EXCLUSI VE

([RELAY, SCREEN_UP], [RELAY, SCREEN_DOM)

DEFI NE_TOGGLI NG
[RELAY, SCREEN_UP] [RELAY, SCREEN_DOW|

The last entry specifies a set of mutually exclusive variables - VCR_SELECT, CD_SELECT, and CASS_SELECT.

If any one of the three variables is turned on (e.g., "ON [VCR_SELECT]") the other two are turned off.

If a channel is defined to be both mutually exclusive and latching, it has the same behavior described above except
that the channel stays on even after the button that activated it is released.

Theoretically, a channel in a mutually exclusive latching set cannot be turned off without activating another channel in
the same set. In NetLinx, you can bypass this rule by using TOTAL_OFF. The TOTAL_OFF function turns a channel or
variable off. Unlike OFF, TOTAL_OFF turns off the status of a channel or variable that is in a mutually exclusive set.

DEFINE_PROGRAM

This keyword defines the mainline code, which is executed continuously to process input and to provide device
feedback.

See the Mainline on page 17 for more information. Also refer to the Understanding When DEFINE_PROGRAM
Runs section on page 18 for details on using DEFINE_PROGRAM effectively.

DEFINE_START

This keyword contains instructions that are executed once at program startup; in other words, at power-up or after a
system reset.

DEFINE_TOGGLING

When a channel is defined as mutually exclusive and latching, there is no way to turn off the channel without
activating another. Mutually exclusive toggling allows a channel to be turned on or off by successive presses of the
same button, like a normal latching channel. The channel is still affected by its mutually exclusive characteristics; if
the channel is on, it can be turned off by activating another channel in the set. The status of a mutually exclusive
toggling button operates the same way as a mutually exclusive latching button.

To make a channel toggling, it must be defined as both mutually exclusive and toggling, as shown below:

DEFI NE_MUTUALLY_EXCLUSI VE([RELAY, SCREEN UP], [RELAY,
SCREEN_DOWN]) DEFI NE_TOGGLI NG RELAY, SCREEN_UP] [RELAY, SCREEN_DOWN]

Language Reference Guide - NetLinx Programming 62

Language Reference Guide - NetLinx Programming

DEFINE Keywords

DEFINE Keywords (Cont.)

DEFINE_TYPE This keyword section defines custom data types such as structures and arrays. An example DEFINE_TYPE section is
shown below.

DEFI NE_TYPE

STRUCTURE MyStruct

{

LONG Num

CHAR Nane[30]

}

See the Structure Keywords on page 128 for a discussion of structures.

DEFINE_VARIABLE This keyword declares global variables. Any variable defined in this section is static (its value is maintained throughout
the duration of program execution) with module scope (it is accessible from any instruction in the current module).
DEFI NE_VARI ABLE
I NTEGER | NT1
FLOAT FP1
VOLATI LE | NTEGER Bl GARRAY[1000] [1000]

NOTE: 1000 marks the limit of the string.
See the Variables - Overview on page 9 for more information.

PROGRAM_NAME This keyword declares the program name. It must appear on the first line of the program and cannot appear more
than once in any single program or include file.
PROGRAM_NAME = ' <program nane>'

RETURN This keyword is used in a DEFINE_FUNCTION or DEFINE_CALL subroutine to prematurely terminate execution and/or
to return a value to the caller. Only DEFINE_FUNCTION functions can return values using the RETURN statement.
The syntax of the RETURN statement is either:

RETURN /1 DEFI NE_CALL or function with no return val ue

or

RETURN Val ue /1 function with return val ue
Upon execution of the RETURN statement, program control is immediately returned to the caller. If the function
containing the RETURN statement has a declared return type, the parameter Value must be included and match the
specified type. If the function has no declared return type, the parameter Value must be omitted.

DEFINE_MUTUALLY_EXCLUSIVE and Variables

Symptom: If you have a set of variables that are mutually exclusive and you set one of the variables to a non-zero value by
assignment, e.g. Var1 = 1 or the Studio Debug window, then the other variables in the set stay "on" i.e. non-zero.

DEFI NE_VARI ABLE

I NTEGER var [4]

I NTEGER x

DEFI NE_MJTUALLY_EXCLUSI VE
(var[1],var[2],var[3],var[4])
DEFI NE_PROGRAM

VWAIT 20

x++; |F (x > 4) x =1;

var[x] = x // This will not invoke the nutually exclusive magic

}

In the NetLinx code example above, all elements of var will eventually be non-zero.
Cause: This has always worked this way, even in Axcess.

Resolution: Use ON to set variables if they are members of a mutually exclusive set:

DEFI NE_VARI ABLE

I NTEGER var [4]

I NTEGER X

DEFI NE_MUTUALLY_EXCLUSI VE

(var[1],var[2],var[3],var[4])

DEFI NE_PROGRAM

WAI T 20

{

x++;, IF (x >4) x = 1;

ON var [x]] /1 This will work as expected - only one elenment of var will have a value of 1 at any tine

This issue does not occur with DEVCHAN's. Using ON or assigning them a non-zero value will work as expected:

DEFI NE_DEVI CE

dvRel ay = 305:1:0

DEFI NE_VARI ABLE

I NTEGER X

DEFI NE_MJTUALLY_EXCLUSI VE
([dvRel ay, 1] . . [dvRel ay, 4])
([dvRel ay, 5] .. [dvRel ay, 8])
DEFI NE_PROGRAM

VWAIT 20

x++; IF (x > 4) x =1;

ON dvRel ay, x] /1 This works as expected: only 1 relay of relays 1 to 4 will be on at a tine
[dvRelay,x + 4] = x // This works as expected: only 1 relay of relays 5to 8 will be on at a tinme
}

63

DEVICE Keywords

DEVICE Keywords

NetLinx supports the following DEVICE keywords:

DEVICE Keywords
DEVICE_ID

Every device in the NetLinx system has a unique ID number identifying its device type, such as an infrared/serial card
or touch panel. The DEVICE_ID keyword returns the ID number pertaining to the specified device. If the device does
not exist in the system, zero is returned. This keyword is usually used to determine whether or not a device is present
in the system.

Devi cel D = DEVI CE_I D(Devi ce)
For example:

| F (DEVI CE_I D(55:1:0) <> 0)

/1 device 55 exists in the system

}

DEVICE_ID_STRING

This keyword returns a string description/model number for the specified device.
Devi ceString = DEVI CE_| D_STRI NG 55: 1: 0)

DEVICE_INFO

NetLinx stores information, such as manufacturer, device name and device ID, for each device in the system. The
DEVICE_INFO keyword allows a programmer to access all available information for any device. If the device does not
exist in the system, a Device ID of zero is returned. This keyword is usually used to determine the firmware version of
a device in the system.

DEVI CE_| NFO(DEV Devi ce, DEV_I NFO_STRUCT I nf o)
Parameters:
« Device: The device to query.
« Info: A DEV_INFO_STRUCT variable to populate with the device information.

Result: DEVICE_INFO does not return a result. However, if the DEVICE_INFO call is successful, the DEVICE_ID element

of the structure will be non-zero. If DEVICE_ID is zero, the structure contains no useful information.

The DEV_INFO_STRUCT contains the following information:

« Info. MANUFACTURER_STRING - A string identifying the manufacturer of the device.

« Info. MANUFACTURER - A integer identifying the manufacturer.

« Info. DEVICE_ID_STRING - A string description/model number for the specified device. This is the same
information returned by the DEVICE_ID_STRING keyword.

« Info. DEVICE_ID - A unique ID number identifying its device type, such as an infrared/serial card or touch panel.
This is the same information returned by the DEVICE_ID keyword.

« Info. VERSION - A string identifying the firmware version of the device. This is not available for AxLink devices.

* Info. FIRMWARE_ID - A unique ID number identifying the firmware for this device. This is not available for AxLink
devices.

« Info.SERIAL_NUMBER - A 16-character serial number of the specified device. The serial number of every device is
established when manufactured. This is the same information returned by GET_SERIAL_NUMBER keyword. This is
not available for AxLink devices.

« Info. SOURCE_TYPE - An integer identifying how the device is connected to the master. This value can be any of the
following:

$00 (SOURCE_TYPE_NO_ADDRESS) - There is no source address.

$01 (SOURCE_TYPE_NEURON_ID) - The device is connected via ICSNet.

$02 (SOURCE_TYPE_IP_ADDRESS) - The device is connected via IP.

$03 (SOURCE_TYPE_AXLINK) - The device is connected via ICSNet.

$06 (SOURCE_TYPE_IPv4_PORT_MAC_ADDRESS) - The device is connected via IP.
$10 (SOURCE_TYPE_NEURON_SUBNODE_ICSP) - The device is connected via ICSNet.
$11 (SOURCE_TYPE_NEURON_SUBNODE_PL) - The device is connected via ICSNet.
$12 (SOURCE_TYPE_IP_SOCKET_ADDRESS) - This device is a NetLinx socket.

$13 (SOURCE_TYPE_RS232) - This device is connected via R$232.

$18 (SOURCE_TYPE_IPv4_PORT_MAC_IPv6) - The device is connected via IP.

$20 (SOURCE_TYPE_INTERNAL) - This device is internal to the NetLinx controlled.

« Info. SOURCE_STRING - A string identifying the source address. Normally, this contains only useful information
when Info.SOURCE_TYPE is $02 (IP), in which case this contains the IP address of the device.

Example:

DEFI NE_DEVI CE

dvNL = 0:1: 0

DEFI NE_VARI ABLE

DEV_I NFO_STRUCT sDevi cel nfo
DEFI NE_EVENT

DATA_EVENT[dvNL]

ONLI NE:

{
DEVI CE_I NFOQ(dvNL, sDevi cel nf o)
SEND_STRI NG 0, "' MANUFACTURER_STRI NG=", sDevi cel nf o. MANUFACTURER_STRI NG'
SEND_STRI NG 0, "' MANUFACTURER=" , | TOA(sDevi cel nf o. MANUFACTURER) "
SEND_STRING 0, "' DEVI CE_I D_STRI NG=', sDevi cel nfo. DEVI CE_I D_STRI NG'
SEND_STRING 0, "' DEVI CE_I D=', | TOA(sDevi cel nfo. DEVICE_I D) "
SEND_STRI NG 0, "' VERSI ON=', sDevi cel nf o. VERSI ON'
SEND_STRING 0, "' FI RMAARE_| D=' , | TOA(sDevi cel nfo. FI RWMARE_I D) "
SEND_STRI NG 0, "' SERI AL_NUMBER=', sDevi cel nf o. SERI AL_NUMBER"
SEND_STRI NG 0, "' SOURCE_TYPE=', | TOA(sDevi cel nf 0. SOURCE_TYPE) "
SEND_STRI NG 0, "' SOURCE_STRI NG=', sDevi cel nf o. SOURCE_STRI NG'

Language Reference Guide - NetLinx Programming 64

DEVICE Keywords

DEVICE Keywords (Cont.)

DEVICE_INFO (Cont.)

Telnet displays this information:
MANUFACTURER_STRI NG=AMX Cor p.
MANUFACTURER=1
DEVI CE_| D_STRI NG=NXC- ME260
DEVI CE_| D=256
VERSI| ON=v2. 30. 128
FI RMMRE_| D=256
SERI AL_NUMBER=2010- 00372
SOURCE_TYPE=1
SOURCE_STRI NG=00A066452001

DEVICE_STANDBY

This command requests that a device goes to standby state. If the device supports the standby state, the device will
transition to standby, generating an asynchronous STANDBY DATA_EVENT.
Example:

DEVI CE_STANDBY(DEVI CE, NORVAL_STANDBY)

DEVICE_WAKE

This command requests that a device in standby state wake up. If the device both supports and is in standby state, it
will transition to awake, generating an asynchronous AWAKE DATA_EVENT (see page 54).
Example:

DEVI CE_WAKE (DEVI CE, NORVAL_WAKE)
Due to the nature of STANDBY state, a device in standby syncs with the master at regular intervals. The request to
wake will not be processed until one of these sync events. So the AWAKE state will appear delayed.

DYNAMIC_APPLICATION_
DEVICE

Specifies a Duet device that is completely dynamic. A dynamically discovered device matching the specified
deviceType could be bound to the duetDevice from anywhere in the system.
DYNAM C_APPLI CATI ON_DEVI CE (DEV duet Devi ce, char[] deviceType,

char[] friendl yNane)

MASTER_SLOT

This keyword represents the slot number the master card is plugged into. "0" is the primary master; "1" is the
secondary master. This keyword is primarily associated with Axcess systems. NetLinx systems have only one master,
so MASTER_SLOT in NetLinx is always "0".

PUSH_DEVICE

See page 120.

RELEASE_DEVICE

See page 120.

PUSH_DEVCHAN

See page 120.

RELEASE_DEVCHAN

See page 120.

REBOOT

This keyword causes the device to reset and is equivalent to doing a power down and up on the master.
REBOOT (DEVI CE)
Parameters:
* DEVICE = ICSP device number to reboot.
NOTE: Not all ICSP devices implement the reboot command.
DEVICE refers to:
- Device - a single device number.
- Dps — a DEV structure.
- D:P:S - a device specification such as 128:1:0.
- DEV[] - a device array.
Examples:
REBQOT (0: 0: 0)
or
REBOOT (0:1:0) or REBOOT (0)
Any of these examples will cause the master to reboot.

SEND_COMMAND

This keyword sends device-specific commands to a NetLinx device.
Syntax:

SEND_COMVAND DEV, '
-or -

SEND_COMVAND DEV[1],

<command string>'

' <command string>'

SYSTEM_NUMBER

This keyword defines an unsigned 16-bit integer system constant that contains the system number.

Language Reference Guide - NetLinx Programming

65

Encode / Decode Keywords

Encode / Decode Keywords

Overview - Encoding and Decoding Binary and XML

There are six functions used to encode and decode variables in NetLinx. This encoding process takes a NetLinx variable, no matter
how complex, and converts it into a string. The decode process will take this string and copy the contents back into a variable.
These functions can be used to take the contents of NetLinx variables and convert them to string. Once the variable exists in string
form, it can then be sent across an RS-232 connection, sent over and IP socket or saved to the NetLinx master's file system (disc
on chip). Once the string is retrieved, either from a data event or by reading the information from the NetLinx master's file system,
the data can be converted back to a variable.
There are two version of this encoding and decoding: Binary and XML.

e The binary conversion routines are: STRING_TO_VARIABLE, VARIABLE_TO_STRING and LENGTH_VARIABLE_TO_STRING.

o The XML routines are XML_TO_VARIABLE, VARIABLE_TO_XML and LENGTH_VARIABLE_TO_XML.
Both sets of routines accomplish the same function but the encoded string differs in protocol. The binary conversion routines uses
a compact binary representation of the variable while the XML represents the variable as a ASCII text only XML document.
The binary routines are ideal when sending data from one NetLinx system to another NetLinx system over RS-232 or IP since the
variable will be as compact as possible. It is also ideal for saving a file to the NetLinx master's file system if you do not intend to edit
the file later. The binary routines encode and decode a variable sequentially meaning that the order and type of the variables must
match on both the encoding and decoding side.
The XML routines are ideal when sending data from one NetLinx system to another type of system over RS232 or IP, since XML is
more universally accepted by other types of computer systems. XML is also ideal for saving a file to the NetLinx master's file system
if you intend to edit the file later since it is entirely ASCII text. It should be noted that while the XML is more universal, is not very
compact. The XML routines encode and decode a variable non-sequentially, meaning that the order and type of variables do not
need to match on both the encoding and decoding side.
Below are some examples of how to use these encoding routines:

PROGRAM_NAME=' Conver si onExanpl e'

(*{{PS_SOURCE_| NFO{ PROGRAM STATS) *)
(************'k*'k*'k**)
(* FILE CREATED ON: 05/22/2001 AT: 11:09:27 *)
(************'k*'k*'k**)
(* FILE_LAST_MODI FI ED ON: 05/22/2001 AT: 11:26: 44 *)
(************'k*'k*'k**)
(* ORPHAN FI LE_PLATFORM 1 *)
(************'k*'k*'k**)
(*11FILE REVI SI O\ *)
(* REVI S| ON DATE: 05/ 22/ 2001 *)
(* *)
(* COMVENTS: *)
(* *)
(************'k*'k*'k**)
(*}} PS_SOURCE_I NFO *)

(***)

(***)

(* System Type : Net Linx *)
(***)
(* REV H STORY: *)

(***)

(***)

(* DEVI CE NUMBER DEFI NI TI ONS GO BELOW *)

(***)

DEFI NE_DEVI CE
dvTP = 128:1: 0

(***)

(* CONSTANT DEFI NI TI ONS GO BELOW *)

(***)

DEFI NE_CONSTANT

nFi | eRead
nFileWite

Inu
i

Language Reference Guide - NetLinx Programming 66

Encode / Decode Keywords

(***)

(* DATA TYPE DEFI NI TI ONS GO BELOW *)

(***)

DEFI NE_TYPE
STRUCTURE _Al bunst r uct
{

LONG ITitlelD

CHAR sArtist[100]
CHAR sTitl e[100]
CHAR sCopyri ght [100]
CHAR sLabel [100]
CHAR sRel easeDat e[100]
I NTEGER nNuniTr acks
CHAR sCode[100]
| NTEGER nDi scNunber

}

STRUCTURE _Al bunstruct 2

{
CHAR sArtist[100]
CHAR sTitl e[100]
I NTEGER nNuniTr acks}

(***)

(* VARI ABLE DEFI NI TI ONS GO BELOW *)

(***)

DEFI NE_VARI ABLE

VOLATI LE _Al bunStruct Al bunst ruct [3]
VOLATI LE _Al bunStruct 2

Al bunSBtruct 2[3]

VOLATI LE CHAR sBi naryString[10000]
VOLATI LE CHAR sXM.St ri ng[50000]
VOLATI LE LONG | Pos

VOLATI LE SLONG slFile

VOLATI LE SLONG sl Return

(***)

(* STARTUP CODE GOES BELOW *)

(***)

DEFI NE_START

(* assign sone val ues *)

Al bunBtruct[1].ITitlelD = 11101000

Al bunBtruct[1].sArtist = 'Buffet, Jimy'
Al bunBtruct[1].sTitle = 'Living & Dying in 3/4 Tine'
Al bunBtruct[1].sCopyright = 'MCA

Al bunStruct[1].sLabel ="'MCA

Al bunBtruct[1].sRel easeDate = '1974'

Al bunStruct[1]. nNunfracks = 11

Al bunBtruct[1].sCode = '3132333435'

Al bunBtruct[1].nDi scNunber = 91

Al bunStruct[2].ITitlel D = 17248229

Al bunBtruct[2].sArtist = 'Buffet, Jimmy'
Al bunBtruct[2].sTitle = 'Of to See the Lizard'
Al bunStruct[2].sCopyright ="'MA

Al bunBtruct[2].sLabel = 'MCA

Al bunBtruct[2].sRel easeDate = '1989'

Al bunBtruct[2].nNunfracks = 11

Al bunStruct[2].sCode = '3132333436'

Al bunBtruct[2].nDi scNunber = 105

Al bunBtruct[3].ITitlelD = 12328612

Al bunBtruct[3].sArtist = 'Buffet, Jimy'
Al bunBtruct[3].sTitle = "A-1-A

Al bunBtruct[3].sCopyright = "'MCA

Al bunStruct[3].sLabel ="'MA

Al bunBtruct[3].sRel easeDate = '1974'

Al bunBtruct[3].nNunfracks = 11

Al bunBtruct[3].sCode = '3132333437"

Al bunttruct[3].nDi scNunmber = 189

Language Reference Guide - NetLinx Programming 67

(***)

(* THE EVENTS GO BELOW *)

(***)

DEFI NE_EVENT
(* CONVERT AND SAVE *)
BUTTON_EVENT[dvTP, 1]

{
PUSH:
{
(* CONVERT TO BI NARY *)
IPos =1
sl Return = VARI ABLE_TO _STRI NG (Al bunfstruct, sBi naryString, | Pos)
SEND_STRI NG 0, "' PCSI TI ON=", | TOA(| Pos),'; RETURN=', | TOA(sl Return)"

(* CONVERT TO XM *)

|Pos =1

sl Return = VARI ABLE_TO XML (Al bunfst ruct, sXMLStri ng, | Pos, 0)

SEND_STRING 0, "' POSI TION=", | TOA(| Pos),"'; RETURN=', | TOA(sl Return)"”

(* NOWWE CAN SAVE THESE BOTH TO DI SCS *)

sl File = FILE_OPEN(' Bi naryEncode. xnl ', nFil eWite)

IF (slFile > 0)

{
sl Return = FILE_WRI TE(sl Fil e, sBi naryString, LENGTH_STRI NG(sBi naryString))
IF (sl Return < 0) SEND_STRING 0, "' FILE WRI TE FAIL RETURN=', | TOA(sl Return)"
sl Return = FILE_CLOSE(sl File)
IF (sl Return < 0) SEND_STRING O, "' FILE CLOSE FAIL RETURN=', | TOA(sl Return)"

}
sl File = FILE_OPEN(' XMLEncode. xm ', nFil eWite)
IF (slFile > 0)
{
sl Return = FILE_WRI TE(sl Fil e, sXMLSt ri ng, LENGTH_STRI NG(sXM.St ri ng))
IF (sl Return < 0) SEND_STRING 0, "' FILE WRI TE FAIL RETURN=', | TOA(s| Return)"
sl Return = FILE_CLOSE(sl| File)
IF (sl Return < 0) SEND_STRING O, "' FILE CLOSE FAIL

RETURN=', | TOA(s| Return)"
}
(* Cear string *)
sBinaryString = ""
sXML.String = ""

}

}
(* READ AND DECCDE *)

BUTTON_EVENT[dvTP, 2]
{
PUSH:
{
(* NOWWE CAN SAVE THESE BOTH TO DI SCS *)
sl File = FILE_OPEN(' Bi naryEncode. xm ', nFi | eRead)
IF (slFile > 0)
{
sl Return = FI LE_READ(sl| Fi |l e, sBi naryString, MAX_LENGTH_STRI NG(sBi naryStri ng))
IF (sl Return < 0) SEND STRING O, "' FILE WRI TE FAIL RETURN=", | TOA(sl Return)"
sl Return = FI LE_CLOSE(s!| File)
IF (sl Return < 0) SEND STRING O, "' FILE CLOSE FAIL RETURN=", | TOA(sl Return)"

}
sl File = FILE_OPEN(' XMLEncode. xm ', nFi | eRead)

IF (slFile > 0)
{
sl Return = FI LE_READ(sl Fil e, sXMLSt ri ng, MAX_LENGTH_STRI NG(sXM.St ri ng))
IF (sl Return < 0) SEND_STRING 0, "' FILE WRI TE FAIL RETURN=', | TOA(s| Return)"
sl Return = FILE_CLCSE(sl| File)
IF (sl Return < 0) SEND_STRING O, "' FILE CLOSE FAIL RETURN=', | TOA(sl Return)"

}

(* CONVERT TO BI NARY *)

lPos =1

sl Return = STRING TO VARI ABLE (Al bunStruct, sBi naryString, | Pos)
SEND_STRING 0, "' PCSI TI ON=", | TOA(I Pos),'; RETURN=', | TOA(sl Return)"
(* CONVERT TO XM *)

lPos =1

sl Return = XM._TO_VARI ABLE (Al buntruct, sXM.String, | Pos, 0)
SEND_STRI NG 0, "' PCSI TI ON=", | TOA(I Pos),'; RETURN=', | TOA(sl Return)"

Language Reference Guide - NetLinx Programming

Encode / Decode Keywords

68

(* READ AND DECCDE *)
(* THE BINARY WLL FAIL SINCE THE DECCDE TYPE DOES NOT MATCH THE ENCODE TYPE *)
(* THE XM. WLL NOT FAIL SINCE I T DOES NOT REQUI RE DATA TO BE THE SEQUENTI AL *)

BUTTON_EVENT[dvTP, 3]

{
PUSH:
{
(* NOWWE CAN SAVE THESE BOTH TO DI SCS *)
sl File = FILE_OPEN(' Bi naryEncode. xm ', nFi | eRead)
IF (slFile > 0)
{
sl Return = FI LE_READ(s| Fi |l e, sBi naryString, MAX_LENGTH_STRI NG(sBi naryStri ng))
IF (sl Return < 0) SEND STRING O, "' FILE WRITE FAIL RETURN=", | TOA(sl Return)"
sl Return = FI LE_CLOSE(s!| File)
IF (sl Return < 0) SEND STRING O, "' FILE CLOSE FAIL RETURN=", | TOA(sl Return)"
}
sl File = FI LE_OPEN(' XMLEncode. xm ', nFi | eRead)
IF (slFile > 0)
{
sl Return = FILE READ(sl File, sXMLSt ring, MAX_LENGTH_STRI NG(sXM.Stri ng))
IF (sl Return < 0) SEND_STRING 0, "' FI LE WRI TE FAI L RETURN=", | TOA(sl Return)"
sl Return = FILE CLCOSE(sl File)
IF (sl Return < 0) SEND_STRING 0, "' FI LE CLOSE FAI L RETURN=', | TOA(sl Return)"
}
(* CONVERT TO BI NARY *)
lPos =1
sl Return = STRING_TO VARI ABLE (Al bunStruct 2, sBinaryString, | Pos)
SEND_STRING 0, "' PCSI TI ON=", | TOA(I Pos),'; RETURN=', | TOA(sl Return)"
(* CONVERT TO XM *)
IPos =1
sl Return = XM._TO _VARI ABLE (Al bunBtruct2, sXM.Stri ng, | Pos, 0)
SEND_STRING 0, "' PCSI TI ON=", | TOA(I Pos),'; RETURN=', | TOA(sl Return)"
}
(***)
(* THE ACTUAL PROGRAM GOES BELOW *)

(***)

DEFI NE_PROGRAM

(***)

(* END OF PROGRAM *)
(* DO NOT PUT ANY CODE BELOW THI'S COVVENT *)

(***)

Language Reference Guide - NetLinx Programming

Encode / Decode Keywords

69

Encode / Decode Keywords

Encode / Decode Keywords

The NetLinx programming language supports the following Encode & Decode keywords:

Encode / Decode Keywords

STRING_TO_VARIABLE
(VARIABLE DECODE)

This routine takes the Encode data from buffer and loads the values into the DECODE variable. The DECODE
variable must match the type of the variables in the encoded string. When the ENCODE variable is a structure,
the decode variable members must match in type and order. If the number of members of the structures doesn't
match then the routine will fill all it can or skip any unused data members.

SI NTEGER STRI NG _TO VARI ABLE (DECODE, CHAR BUFFER[], LONG POSI TI ON)

Parameters:

« DECODE: Any type of variable. This is the variable to be decoded into.

* BUFFER: Must be of char array type. This is where the encoded data is found.

« POSITION: This is where the first byte of the decode data. It is also modified to point to the next location
after the last decoded byte. That means that successive calls to this function can be made without modifying
position. The position should be set to one on the first call.

Result:

« 2: Decode data too small, more members in structure

e 1: Structure too small, more members in decode string

* 0:Decoded OK

* -1: Decode variable type mismatch

« -2:Decode data too small, decoder ran out of data

VARIABLE_TO_STRING
(VARIABLE ENCODE)

This routine takes the variable ENCODE and creates entries in the buffer to represent that variable. The variable

passed in can be of any type including arrays, structures, and arrays of structures.

SI NTEGER VARI ABLE_TO_STRI NG(ENCCDE, CHAR BUFFER[], LONG POSI TI ON)

Parameters:

« ENCODE: Any type of variable. This is the variable to be encoded.

« BUFFER: This is where the encode data is placed.

« POSITION: This is where the first byte of the encoding is placed. Is it also modified to point to the next
location after the last encoded byte. That means that successive calls to this function can be made without
modifying position. Position should be set to one on the first call.

Result:

0: Encoded OK
-1: Encoded variable unrecognized type
-2: Encoded data would not fit into buffer; the buffer is too small.
Result = VAR ABLE_TO STRING (MyStruct, Buffer, Pos)

LENGTH_VARIABLE_TO_
STRING (VARIABLE Encode)

This routine calculates how many bytes it takes to encode a variable.
LONG LENGTH_VARI ABLE_TO STRI NG (VARI ABLE Encode)
Parameters:
* Encode: The variable (any type) to be encoded.
Result:
>0: Number of bytes required to encode variable.
0: Encoded variable error, unrecognized type
Syntax:
SI NTEGER VARI ABLE_TO XM.(CONSTANT VARI ANTARRAY A, CHAR B[], LONG C, LONG D)
Where:
* Ais the variable (any type) to be encoded:
« Bis the CHAR array to hold the resulting XML.
« Cis the beginning encoding position. Encoding will start as B[C].
« Dis the encoding flag. These can be used together.
Value $01 is "Encode with Types". If the bit is set, types will be included for every variable being encoded.
The default is to not include types. The constant XML_ENCODE_TYPES can be used to specify this flag.
Value $10 is "Encoded CHAR arrays as using data list". The constant XML_ENCODE_CHAR_AS_LIST can be
used to specify this flag.
Value $20 is "Array Encoding is Little-Ending". The constant XML_ENCODE_LE can be used to specify this
flag.
The return value is:
3 = XML decode data type mismatch
2 = XML decode data too small, more members in structure
1 = Structure too small, more members in XML decode string
0 = Decoded OK
-1 = Decode variable type mismatch
-2 = Decode data too small, decoder ran out of data. Most likely poorly formed XML.
-3 = Output character buffer was too small.
Example:
DEFI NE_TYPE

STRUCTURE _Al bunft r uct

{
LONG I Titlel D
CHAR sArtist[100]
CHAR sTi t | e[100]
}

Language Reference Guide - NetLinx Programming

70

Encode / Decode Keywords

Encode / Decode Keywords (Cont.)

LENGTH_VARIABLE_TO_XML

Syntax:
CHAR LENGTH_VARI ABLE_TO XM.(CONSTANT VARl ANTARRAY A, LONG B)

Where:

« Ais the variable (any type) to be encoded.

« Bis the encoding flag. These can be used together.
Value $01 is "Encode with Types". If the bit is set, types will be included for every variable being encoded.
The default is to not include types.
Value $10 is "Encoded CHAR arrays as using data list". See Binary Array Encoding on page 223.
Value $20 is "Array Encoding is Little-Ending".

The return is the length needed to encode the variable.

VARIABLE_TO_XML

Syntax:
SI NTEGER VARI ABLE_TO_XM.(CONSTANT VARI ANTARRAY A, CHAR B[],

Where:

« Ais the variable (any type) to be encoded:

« Bis the CHAR array to hold the resulting XML.

« Cis the beginning encoding position. Encoding will start as B[C].

« Dis the encoding flag. These can be used together.
Value $01 is "Encode with Types". If the bit is set, types will be included for every variable being encoded.
The default is to not include types. The constant XML_ENCODE_TYPES can be used to specify this flag.
Value $10 is "Encoded CHAR arrays as using data list". The constant XML_ENCODE_CHAR_AS_LIST can be
used to specify this flag. See the Encoding and Decoding: Binary and XML section on page 175.
Value $20 is "Array Encoding is Little-Ending". The constant XML_ENCODE_LE can be used to specify this
flag.

Return:

3= XML decode data type mismatch

2 = XML decode data too small, more members in structure

1 = structure too small, more members in XML decode string

0 = decoded OK

-1 = decode variable type mismatch

- 2 = decode data too small, decoder ran out of data. Most likely poorly formed XML.

-3 = output character buffer was too small

Example:

DEFI NE_TYPE

LONG C, LONG D)

STRUCTURE _Al bunft r uct

{
LONG I Titlel D
CHAR sArtist[100]
CHAR sTi t | e[100]
}

DEFI NE_VARI ABLE

_Al bunt ruct MyAl bunStruct [3]
LONG | Pos

SLONG sl Return

SLONG sl File

SLONG sl Resul t

CHAR sBi narySt ri ng[10000]
CHAR sXM_St ri ng[50000]

DEFI NE_START

MyAl bunStruct[1].1TtlelD = 11101000

M/Al bunBtruct[1].sArtist = ‘Buffet, Jimy’

M/Al bunStruct[1].sTitle = ‘Living & Dying in % Tinme’
M/Al bunStruct[2].1TtlelD = 11101012

M/Al bunStruct[2].sArtist = ‘Sinatra, Frank’

M/Al bunBtruct[2].sTitle = “Cone Fly Wth M’

M/Al bunStruct[3].1Ttlel D = 33101000

M/Al bunBtruct[3].sArtist = ‘Holiday, Billie’

MYAl bunStruct[3].sTitle = ‘Lady in satin’

DEFI NE_EVENT

BUTTON_EVENT[TP, 1]
{
PUSH:
{
/1 Convert To Binary
IPos =1
sl Return = VARI ABLE_TO_STRI NG(WAl bun®t r uct ,

/ I Convert And Save

sBinaryString, |Pos)

SEND_STRING 0, "’ POSI TION=", | TOA(l Pos),” — Result = ‘,ITOA(sl Return)"
/1 Convert To XM

IPos =1

sl Return = VARI ABLE_TO XM.(WAl buntt ruct, sXM.String, |Pos, 0)

SEND_STRING 0, "’ POSI TION=", | TOA(l Pos),” — Result = ‘,ITOA(sl Return)"

Language Reference Guide - NetLinx Programming

71

Encode / Decode Keywords

Encode / Decode Keywords (Cont.)

VARIABLE_TO_XML (Cont.)

/1l Save Structure to Disk - Binary
sl File = FILE_OPEN(‘ Bi naryEncode. xm ', 2)
sl Return = FILE_WRI TE(sl File, sBinaryString, LENGTH STRI NG(sBinaryString))
sl Return = FILE_CLCSE(sl File)
/1 Save Structure To Disk — XM
sl File = FILE_OPEN(' xm Encode. xm ', 2)
sl Return = FILE_WRI TE(sl| File, sXM.String,
LENGTH_STRI NG(sXM_.St ri ng))
sl Return = FI LE_CLOSE(s!| File)

}
RELEASE:
{
}
}
BUTTON_EVENT[TP, 2] // Read and Decode
{
PUSH:

{
/!l Read Binary File
sl File = FILE_OPEN(‘ Bi nar yEncode. xm ', 1)
sl Result = FILE_READ(s| File, sBinaryString, MAX LENGTH STRI NG sBi naryString)
sl Result = FILE_CLGCSE (sl File)
/1 Read XML File
sl File = FILE_OPEN(‘ XMLEncode. xm ', 1)
sl Result = FILE_READ(s| File, sXM.String, MAX_LENGTH_STRI NG(sXM.Stri ng))
sl Result = FILE_CLGCSE (sl File)
}
RELEASE:
{
}
}
/1l Convert To Binary
IPos =1
sl Return = STRI NG _TO VARI ABLE(WAl bunft ruct, sBinaryString, sl Pos)
/1 OR Convert To XM
slPos = 1
sl Return = XM._TO _VARI ABLE (WAl bunStruct, sXM.String, slPos, 0)

XML_TO_VARIABLE

Syntax:
SI NTEGER XM._TO VARI ABLE(VARI ANTARRAY A, CONSTANT CHAR B[], LONG C, LONG D)

Where:

« Ais the variable (any type) to be encoded.

« B s the CHAR array holding the source XML.

« Cis the next beginning encoding position. Encoding ended at B[C-1].

« D are the decoding flags. They can be used together.
Value $01 is "Force Types When Decoding". If the type in the XML does not match the variable typed being
decoded to, the variable will not be written and the variable will be skipped in the XML. The constant
XML_DECODE_TYPES can be used to specify this flag.
Value $10 is "Do Not preserve current value of A". If set, A will be cleared if not explicitly set. The constant
XML_DECODE_NO_PRESERVE can be used to specify this flag.

The return value is:
3 = XML decode data type mismatch
2 = XML decode data too small, more members in structure
1 = Structure too small, more members in XML decode string
0 = Decoded OK
-1 = Decode variable type mismatch
- 2 = Decode data too small, decoder ran out of data. Most likely poorly formed XML.
-3 = Output character buffer was too small.

Example:

DEFI NE_TYPE

STRUCTURE _Al bunft r uct
{

LONG I Titlel D

CHAR sArtist[100]

CHAR sTitl e[100]

}

Language Reference Guide - NetLinx Programming

72

Encode / Decode Keywords

Encode / Decode Keywords (Cont.)

XML_TO_VARIABLE (Cont.) DEFI NE_VARI ABLE

_Al buntt ruct MyAl bunSBtruct[3]
LONG | Pos

SLONG sl Return

SLONG sl File

SLONG sl Resul t

CHAR sBi naryString[10000]
CHAR sXM_St ri ng[50000]

DEFI NE_START

MAl bunStruct[1].1Ttl el D = 11101000

M/Al bunStruct[1] . sArtist = ‘Buffet, Jimy’

M/Al bunStruct[1].sTitle = ‘Living & Dying in % Ti ne’
M/Al bunStruct[2].1TtlelD = 11101012

M/Al bunStruct[2].sArtist = ‘Sinatra, Frank’

M/Al bunStruct[2].sTitle = ‘Cone Fly Wth M’

MAl bunStruct[3].1Ttlel D = 33101000

M/Al bunStruct[3].sArtist = ‘Holiday, Billie’

M/Al bunStruct[3].sTitle = ‘Lady in satin’

DEFI NE_EVENT
BUTTON_EVENT[TP, 1] / /Convert And Save
{
PUSH:
{
// Convert To Binary
IPos =1
sl Return = VARI ABLE_TO_STRI NG MAl bunBtruct, sBinaryString, | Pos)
SEND_STRING 0, "’ PCSI TION=", | TOA(| Pos),” — Result = ‘,1TOA(sl Return)"
/1 Convert To XM.
IPos =1
sl Return = VARI ABLE_TO XM.(My Al bunStruct, sXM.String, |Pos, 0)
SEND_STRING 0, "’ PCSI TION=", | TOA(| Pos),” — Result = ‘,1TOA(sl Return)"

// Save Structure to Disk - Binary
sl File = FILE_OPEN(‘ Bi naryEncode. xm ', 2)
sl Return = FILE_WRI TE(sl File, sBinaryString, LENGTH _STRI NG(sBinaryString))
sl Return = FILE_CLCSE(sl File)
/1l Save Structure To Disk — XM
sl File = FILE_OPEN(' xm Encode. xm ', 2)
sl Return = FILE_WRI TE(sl| File, sXM.String, LENGTH STRI NG sXM.String))
sl Return = FILE_CLCSE(sl File)

}
RELEASE:
{
}
}
BUTTON_EVENT[TP, 2] // Read and Decode
{
PUSH:
{
/!l Read Binary File
sl File = FI LE_OPEN(* Bi naryEncode. xm ', 1)
sl Result = FILE_READ(s!| File, sBinaryString, MAX LENGTH STRI NG sBi naryString)
sl Result = FILE_CLGCSE (slFile)
/1 Read XML File
sl File = FI LE_OPEN(‘ XM_LEncode. xm ', 1)
sl Result = FILE_READ(s| File, sXM.String, MAX_LENGTH_STRI NG(sXM.Stri ng))
sl Result = FILE_CLGCSE (slFile)
// Convert To Binary
lPos =1
sl Return = STRI NG TO _VARI ABLE(M Al bunfSt ruct, sBinaryString, sl Pos)
// OR Convert To XML
slPos =1
sl Return = XM__TO VARI ABLE (WAl bunStruct, sXM.String, slPos, 0)
}
RELEASE:
{
}
}

Language Reference Guide - NetLinx Programming 73

Event Handler Keywords

Event Handler Keywords

Overview

NetLinx provides a special program section called DEFINE_EVENT to define handlers for incoming events/notifications. These
handlers are stored in an event table providing quick access to code that must be executed when an event is received. There are
handlers to support five types of events:

e Button events include pushes, releases, and holds, which are associated with a push or release on a particular device-
channel.

Channel events occur when an output change (On/Off) is detected on a device-channel.
Data events include commands, strings, status, and error messages.
Level events are received as a result of a level change on a particular device.

Timeline events trigger events based on a sequence of times.

NOTE: The processing of an event associated with a given member of a device, channel, device-channel, level, or device-level array
must be completed before processing can begin on another event associated with the same array.

All incoming events are stored in a queue pending processing. Messages are processed in the order they are received. The steps to
processing an event are:

1. Check all events for a handler matching the specified event. If a handler is found, run it.
2. Ifthere is no event handler, run MAINLINE.

Event
handler
available?

NO
—{ Run Mainiine |

Run event
handler >

FIG. 2 Processing an Event

NOTE: More than one handler can be defined for the same event. In this case, the handlers are executed in the order in which they are
defined in the program.

The event handler descriptions are:
e DEVICE refers to a device specification:
DEVI CE A single device number constant
D P: S A constant device specification such as 128:1:0
DEV[] A device array

e CHANNEL refers to:
CHANNEL A single channel number constant
CHAN[] An integer array of channel numbers
DEVCHAN]] A device-channel array

e LEVEL refers to:
LEVEL A single level number constant
LEV[] An integer array of level numbers
DEVLEV]] A device-level array
NOTE: The processing of an event associated with a given member of a device, channel, device-channel, level, or device-array must
be completed before processing can begin on another event associated with the same array.
Button Events

Events associated with a button on a touch panel or keypad are referred to as Button Events. Button events include pushes,
releases, and holds. These events are associated with a push or release on a particular device-channel.

The format for a Button Event is shown below:

Language Reference Guide - NetLinx Programming 74

Event Handler Keywords

BUTTON_EVENT[DEVI CE, CHANNEL] or BUTTON_EVENT[(DEVCHAN[])]

{
PUSH:
{
/1 PUSH event handl er
}
RELEASE:
{
/1 RELEASE event handl er
}
HOLD[TI ME] : or HOLD[TI ME, REPEAT]:
{
/1 HOLD event handl er
}
}

e The [<DEVICE>, <CHANNEL>] declaration can contain a DEV device set, or a DEVCHAN device-channel set in addition to
individual device and channel declarations.

e A HOLD event handler specifies the actions that should be performed when a button is pressed and held for a minimum
length of time indicated by the TIME parameter (TIME is specified in .10 second increments).

e The REPEAT keyword specifies that the event notification should be repeated in TIME increments as long as the button is
held.

e The BUTTON object is available to the button event handler as a local variable. The following table lists the information
contained in Button Objects.

Button Objects

Property Name Type Description

Button.Input DEVCHAN The device, channel combination that caused the BUTTON_EVENT to happen.
Button.Input.Channel INTEGER The channel number that caused the BUTTON_EVENT to happen.
Button.Input.Device DEV The device that caused the BUTTON_EVENT to happen.
Button.Input.Device.Number INTEGER The device number of the device that caused the BUTTON_EVENT to happen.
Button.Input.Device.Port INTEGER The port of the device that caused the BUTTON_EVENT to happen
Button.Input.Device.System INTEGER The system number of the device that caused the BUTTON_EVENT to happen
Button.Holdtime LONG Current hold time in one-millisecond (1 ms) increments

Button.SourceDev DEV Source device of button event. (This property is no longer used.)
Button.SourceDev.Number INTEGER Source device number. (This property is no longer used.)
Button.SourceDev.Port INTEGER Source device port. (This property is no longer used.)
Button.SourceDev.System INTEGER Source device system. (This property is no longer used.)

If the event handler is specified using an array for DEV,CHANNEL, or a DEVCHAN array, GET_LAST can determine which index in the
array caused the event to run.

Channel Events
Channel Events are similar to Button Events. Channel Events are generated by ON, OFF, PULSE, TO, or MIN_TO.
The format for a Channel Event:

CHANNEL_EVENT[DEVI CE, CHANNEL] or CHANNEL_EVENT[(DEVCHAN])]
{
ON:
{
/1 CHANNEL ON event handl er

OFF:
{

}

/1 CHANNEL OFF event handl er

}
NOTE: The Channel object is available to the Channel Event handler as a local variable.

Like Button Events, the [<devi ce>, <channel >] declaration can contain a DEV device set, or a DEVCHAN device-channel set in
addition to individual device and channel declarations. In the following example, a Channel Event is defined for the 'Projector Lift Up'
relay, telling the system to turn off the projector every time this relay is turned on:

DEFI NE_EVENT

BUTTON_EVENT[TP1, 21] (* LIFT UP BUTTON *)
PUSH:

PULSE[RELAY, LI FT_UP|

Language Reference Guide - NetLinx Programming 75

BUTTON_EVENT[TP1, 22]
{

PUSH:

PULSE[RELAY, RACK_OFF]
PULSE[RELAY, LI FT_UP|

PULSE[VPRQJ, VP_POWER OFF]

}
}
CHANNEL_EVENT[RELAY, LI FT_UP]
{
ON:
}
}

Event Handler Keywords

(* SYSTEM OFF BUTTON *)

(* LIFT UP RELAY EVENT *)

NOTE: Since turning on or pulsing the relay does not produce a push, a Button Event is not generated.

The following table lists the information contained in Channel events:

Channel Objects

Property Name Type Description

Channel.Device DEV The device that caused the CHANNEL_EVENT to happen.
Channel.Device.Number INTEGER The device number of the device that caused the CHANNEL_EVENT to happen.
Channel.Device.Port INTEGER The port of the device that caused the CHANNEL_EVENT to happen.
Channel.Device.System INTEGER The system number of the device that caused the CHANNEL_EVENT to happen.
Channel.Channel INTEGER The channel number that caused the CHANNEL_EVENT to happen.
Channel.SourceDev DEV Source Device of Channel Event

Channel.SourceDev.Number INTEGER Source Device Number

Channel.SourceDev.Port INTEGER Source Device Port

Channel.SourceDev.System INTEGER Source Device System.

If the event handler is specified using an array for DEV, CHANNEL, or a DEVCHAN array, GET_LAST can be used to determine which

index in the array caused the event to run.

Data Events

Data Events provide some interesting capabilities in a NetLinx system. At first glance, it seems to be concerned with receiving
strings of data either from a serial data device (such as an NXC-COM2 card) or an interface device (such as a touch panel or

keypad). While this is a valid function, DATA_EVENT has many more capabilities and works with many devices.

The format for Data Events:

DATA_EVENT[DEVI CE]

COMIVAND:

/| Command processing goes here

}
STRI NG
{

/1 String processing goes here

}
ONLI NE:

/1 OnLine processing goes here

}
OFFLI NE:
{

/1 O fLine processing goes here

}
ONERROR:

/] OnError processing goes here

}
STANDBY:

/1 Standby processing goes here

}
AVAKE:

/'l Awake processing goes here

}
}

NOTE: The data object is available to the Data Event handler as a local variable.

The following table lists the information contained in data objects:

Language Reference Guide - NetLinx Programming

76

Event Handler Keywords

Data Objects

Property Name Type Description

Data.Device DEV Device

Data.Device.Number INTEGER Device number
Data.Device.Port INTEGER Device port
Data.Device.System INTEGER System number
Data.Number LONG Event number
Data.SourceDev DEV Source Device of Data Event
Data.SourceDev.Number INTEGER Source Device Number
Data.SourceDev.Port INTEGER Source Device Port
Data.SourceDev.System INTEGER Source Device System
Data.Text CHAR Array Text Associated With the Event

e The Event Number is a number associated with a command, error condition or the device ID associated with an online/
offline event. The numeric value is stored as either a floating-point number or integer, as appropriate; the value can be
assigned to a variable of any numeric type. This field could be a value associated with a command event or error condition.

e Text Associated with The Event is associated with a command, string, or error notification. It can also be the device ID
string in the case of an online/offline event.

The following table shows the fields that contain relevant information for data or notifications received via Internet protocol (IP):

Data Objects Received Via the Internet Protocol (IP)

Property Name Type Description
Data.SourceIP CHAR Array IP address of the client/source application
Data.SourcePort LONG Server/source port number

Not all fields in the DATA object apply to all types of events. The following table lists the fields and the corresponding events. An 'X'
indicates that the field applies (or could apply) to the given event.

Data Object Fields

Property Name Command String OnLine OffLine OnError AWAKE STANDBY
Data.Device X X X X X X X

Data.Number

Data.Text

Data.SourceIP

Data.ServerIP

X | X[X| X[X

X
X
X
X
X

X | X[X| X[X

X X
X X
X X
X X
X X

x| X[x| X
x| X[x| X

Data.SourcePort

NetLinx is able to process data received by a DATA_EVENT in real time. When data is received, it enters the message queue and
triggers a data event. If a buffer has been created for the device, the data is placed within the buffer and can be used by either the
DATA_EVENT or mainline. The data can be evaluated in two ways. The actual string that is received by the message queue can be
evaluated using the DATA.TEXT object within the event. The string in DATA.TEXT is also added to the end of the device's buffer. This
becomes a factor when receiving large strings, or when receiving strings with an embedded string length or start and end
characters. DATA_EVENT then evaluates the buffer to see if the entire string has been received before processing it; however, the
evaluation is done immediately upon receipt of another chunk of data, and is only done when data is received.

For example, DATATEXT may equal {'over the lazy brown dog',ETX} and the DATA_BUFFER[500] might equal {STX,'The quick gray
fox jumps over the lazy brown dog',ETX}. By evaluating the buffer value, you can evaluate the entire string at once.

Two other important aspects of the DATA_EVENT are the ONLINE and OFFLINE event handlers. ONLINE and OFFLINE events are
triggered when the master recognizes a device has come on the bus or has dropped off the bus.

NetLinx handles all device initializations and offline warning through the DATA_EVENT. Since every device triggers an ONLINE event
when the master is reset, this not only ensures that the device will be initialized on startup, but also insures that the device will be
initialized any time the device comes online. The DATA_EVENT is evaluated on a need to know basis, rather than on each pass
through mainline.
The following example shows basic code for tracking a touch panel page:

e Assume that the variables have been properly defined in the DEFINE_VARIABLE section.

e The DEFINE_START section contains the creation of the buffer and the DEFINE_PROGRAM section contains the string

evaluation.

Language Reference Guide - NetLinx Programming 77

Event Handler Keywords

DEFI NE_START
CREATE_BUFFER TP1, TP1_BUFFER
DEFI NE_EVENT
DATA_EVENT[TP1] (* EVALUATE TP1 DATA *)
STRING
SELECT
t ACTI VE (FI ND_STRI NG (DATA. TEXT, ' PAGE-', 1)):

JUNK = REMOVE_STRI NG (DATA. TEXT, ' PAGE-', 1)
CUR_PAGE = DATA. TEXT

}
ACTI VE (FI ND_STRI NG (DATA. TEXT, ' KEYP-',1)):
{
(* keypad code *)

}
ACTI VE (FI ND_STRI NG (DATA. TEXT, ' KEYB-' , 1)):

{

(* keyboard code *)
}
ACTI VE (1):
{

(* default code *)
}

}

CLEAR_BUFFER TP1_BUFFER
}
ONLI NE:

SEND_COMVAND TP1, ' TPAGEON

Each event handler contains several embedded data objects that pass data values into the event handler code.

Level Events

Level Events are triggered by a level change on a particular device. This eliminates constantly evaluating a level against a previous
value. The format for LEVEL_EVENTS:
LEVEL_EVENT[DEVI CE, LEVEL] or LEVEL_EVENT[([DEVLEV] 1)]

/1 level event handler

}
NOTE: The level object is available to the Level Event handler as a local variable.

It contains the information shown in the table below: |

Level Objects

Property Name Type Description

Level.Input DEVLEV Device + Level that caused the event to occur

Level.Input.Device DEV The device that caused the LEVEL_EVENT to happen
Level.Input.Device.Number INTEGER The device number of the device that caused the LEVEL_EVENT to happen.
Level.Input.Device.Port INTEGER The level port of the bargraph that caused the LEVEL_EVENT to happen.
Level.Input.Device.System INTEGER The system number of the device that caused the LEVEL_EVENT to happen.
Level.Input.Level INTEGER The level code of the bargraph that caused the LEVEL_EVENT to happen.
Level.SourceDev DEV Source Device of Level Event

Level.SourceDev.Number INTEGER Source Device Number

Level.SourceDev.Port INTEGER Source Device Port

Level.SourceDev.System INTEGER Source Device System

Level.Value Numeric The value of the bargraph when the LEVEL_EVENT occurred.

LEVEL_VALUE is an embedded object value in the LEVEL_EVENT statement. If the event handler is specified using an array for DEV,
CHANNEL, or a DEVCHAN array, GET_LAST can be used to determine which index in the array caused the event to run. The numeric
value is stored either as a floating-point number or integer, as appropriate; but the value can be assigned to a variable of any
numeric type.

Example Level Event:

Language Reference Guide - NetLinx Programming 78

Event Handler Keywords

LEVEL_EVENT [TEMP, 1]
{ I F (LEVEL. VALUE >= COOL_POI NT)
ON[RELAY, FAN|
LLSE IF (LEVEL. VALUE <= HEAT_PO NT)
} {O:F[RELAY, FAN|

Custom Events

A Custom Event is generated by certain devices in response to query commands or unique device events. For instance, G4 touch
panels generate custom events in response to button query commands or mouse clicks. An example channel event is shown below:
CUSTOM EVENT[DEVI CE, | D, TYPE] or CUSTOM EVENT[DEVCHAN, EVENTI D]

{
}

The EVENTID is specific to each device. For instance, the EVENTID sent in response to a button text query command for G4 touch
panels is 1001.

NOTE: For more information on EVENTI| Dvalues and the values of the custom event for each EVENTI D, see the programming section
of the device manual with which you are working.

The following table lists the information contained in Custom events:

Channel Objects

Property Name Type Description

Custom.Device DEV Device

Custom.Device.Number INTEGER Device number

Custom.Device.Port INTEGER Device port

Custom.Device.System INTEGER System number

Custom.ID INTEGER The ID of the custom event as defined by the device
Custom.Type INTEGER The TYPE of the custom event as defined by the device
Custom.Flag INTEGER A flag associated with the event

Custom.Value1 SLONG The first value associated with the event
Custom.Value2 SLONG The second value associated with the event
Custom.Value3 SLONG The third value associated with the event

Custom.Text CHAR([] Text associated with the event

Custom.Encode CHART[] A string encoded with VARIABLE_TO_STRING encoding for complex data types.
Custom.SourceDev DEV Source device of custom event
Custom.SourceDev.Number INTEGER Source device number

Custom.SourceDev.Port INTEGER Source device port

Custom.SourceDev.System INTEGER Source device system.

If the event handler is specified using an array for DEV, INTEGER, or a DEVCHAN array, GET_LAST can determine which index in the
array caused the event to run.

Event Parameters

It has already been stated that DEFINE_EVENT handlers are stored in an event table providing quick access to code that must be
executed when an event is received. The event table keeps a list of all events in a sorted order to more quickly determine which
code needs to be accessed for a giving incoming event. The event table is built before DEFINE_START runs and it not changed
anytime after that. As a result, there are certain rules that must be applied to the parameters used in DEFINE_EVENTSs.

Since the event table is built before DEFINE_START, all event parameters must contain the correct information prior to
DEFINE_START. This requires that all EVENT parameters must be defined at compile time. In addition, many parameter "shortcuts"
to help fulfill this requirement. Using BUTTON_EVENT as an example, the simplest version of event parameters is a device and
channel reference. In the following example:

DEFI NE_DEVI CE
dvTp = 128:1:0

DEFI NE_EVENT
BUTTON_EVENT[dvTp, 1]
{
PUSH:
SEND_STRING 0, 'Button 1 of dvTp was pushed'
}

The device, dvTp, was defined in the DEFINE_DEVICE section, which has the effect of making it an initialized variable of type DEV,
and the channel number was a hard-coded value of 1. Since both of these value were defined at compile time, the event is entered
into the event table correctly. Let's take another example:

Language Reference Guide - NetLinx Programming 79

Event Handler Keywords

DEFI NE_DEVI CE
dvTp = 128:1:0

DEFI NE_VARI ABLE
I nt eger nMyChannel

DEFI NE_START
nMW/Channel = 1

DEFI NE_EVENT
BUTTON_EVENT[dvTp, nMyChannel]
{
PUSH:
Send_String 0,"'Button ', TOA(nM/Channel),"' of dvTp was pushed'"
}

In this example, the event will not perform as the previous one did. When the code is compiled, the event parameters are dvTp,
which is already assigned, and nMyChannel, which has a value of 0. nMyChannel does not get assigned a value of 1 until
DEFINE_START, at which time the event has already been added to the event table. If you were to run this code, you would discover
that it did in fact run when button 1 was pushed, leading us to one of the "shortcuts":

NOTE: A value of O for a Channel or Level Number in a BUTTON_EVENT, CHANNEL_EVENT or LEVEL_EVENT will be interpreted as an
event handler for all events of that type from the given device number(s).

So, the reason the above example runs when button 1 was pushed is that the above example runs when any button on dvTp is
pushed. This "shortcut" was added so you could define an event handler for all buttons, channel or levels of a device without having
to define a DEVCHAN of DEVLEV containing every value you may want to handle. To make the example 2 behave like the example 1,
we simply need to make sure the value of nMyChannel contains a value of 1 at compile time. This is simply done by initializing
nMyChannel a value of 1 in the DEFINE_VARIABLE section. The new example reads:

Example 3:

DEFI NE_DEVI CE

dvTp = 128:1:0

DEFI NE_VARI ABLE
I nteger nMyChannel =1

DEFI NE_EVENT

BUTTON_EVENT[dvTp, nMyChannel]

PUSH:
Send_String 0,"'Button ', TOA(nM/Channel),"' of dvTp was pushed'"

}
You may be tempted to use a more traditional variable as the channel number, mainly PUSH_CHANNEL or RELEASE_CHANNEL. It is
important to realize that the identifiers are nothing more than global (system) variable. At compile time, the values are defined and
contain a value of 0. So the following code will have the effect you expect button probably for a different reason than you expect.

DEFI NE_EVENT
BUTTON_EVENT[dvTp, PUSH_CHANNEL]
{
PUSH:
Send_String 0,"' Button ', | TOA(BUTTON. | NPUT. CHANNEL) , ' of dvTp was pushed'"
RELEASE:
Send_String 0,"'Button ', | TOA(BUTTON. | NPUT. CHANNEL) ,' of dvTp was rel eased' "
}

Although the event will run for both the push and release of all buttons for dvTp, you may also be tempted to think that you need to
make sure the event runs for RELEASE_CHANNEL by adding the following:

DEFI NE_EVENT
BUTTON_EVENT[dvTp, PUSH_CHANNEL]
BUTTON_EVENT[dvTp, RELEASE_CHANNEL]

PUSH:

Send_String 0,"'Button ', | TOA(BUTTON. | NPUT. CHANNEL) ,' of dvTp was pushed'"
RELEASE:

Send_String 0,"' Button ', | TOA(BUTTON. | NPUT. CHANNEL) , ' of dvTp was rel eased""

}
However, since both PUSH_CHANNEL and RELEASE_CHANNEL have a value of 0 at compile time, you are in effect stacking two
events that are interpreted as running for any button pushed on the panel and as a result, the event is run twice every time a
button is pushed or released. This may not seem like a big problem until you try to toggle a variable in the event: since the event
runs twice for every button push, the variable toggles on then toggles off again.
There are some additional parameter "shortcuts" available. In all cases, the following rules apply:

e When a DEV can be used, a DEV array can also be used.

e When a DEVCHAN can be used, a DEVCHAN array can be used.

e When a DEVLEV can be used, a DEVLEV array can be used.

Language Reference Guide - NetLinx Programming 80

Event Handler Keywords

e When a Char, Integer or Long can be used, a Char, Integer or Long array can also be used.
e You can apply more then 1 of the above rules at a time in a given event handler.
o GET_LAST() can be used to determine which index of an array (any type) caused the event to fire.

The above rules can let you write some interesting event handler. Let's say you wanted to handle 4 buttons from 6 panels all with
one button event. You could write:

DEFI NE_DEVI CE

dvPanel 1 = 128:1:0
dvPanel 2 = 129:1:0
dvPanel 3 = 130:1:0
dvPanel 4 = 131:1:0
dvPanel 5 = 132:1:0
dvPanel 6 = 133:1:0

DEFI NE_VARI ABLE

DEV dvMyPanel s[] = {dvPanel 1, dvPanel 2, dvPanel 3, dvPanel 4, dvPanel 5, dvPanel 6 }
I NTEGER nMWyButtons[] = { 4, 3, 2, 1}

I NTEGER nPanel | ndex

| NTEGER nBut t onl ndex

DEFI NE_EVENT

BUTTON_EVENT[dvMyPanel s, nMyBut t ons]

{
PUSH:

nPanel | ndex = GET_LAST(dvMPanel s)

nBut t onl ndex = GET_LAST(nMyButt ons)

Send_String 0,"' Button |ndex=',|TOA(nButtonlndex),' was pushed on Panel I|ndex=",|TOA(nPanel | ndex)"

}
}

This event will be run for all combinations of dvMyPanel and nMyButtons, 24 buttons in all. The GET_LAST() function is very useful
when running event using array as parameters. GET_LAST() returns an index value, starting at 1, for the element that triggered the
event. In the case of nButtonIndex, it will contain a value of 1 when button 4 was pressed, a value of 2 when button 3 was
pressed... This can be very useful in the case of transmitters and wired panels where the channel number may not reflect a
numerical sequence you would like, such as with Numeric Keypads.

Event Handler Keywords

The NetLinx programming language supports the following Event Handler keywords:

Event Handler Keywords

BUTTON_EVENT Defines a button event handler and can only be used in the DEFINE_EVENT section of the program. This type of
handler processes PUSH, RELEASE, and HOLD events.

BUTTON_EVENT[DEVI CE, CHANNEL] or

BUTTON_EVENT [(DEVCHAN])]

{
PUSH:
// Push statements go here
}
RELEASE:
/1 Rel ease statenents go here
}
HOLD[TI ME, [REPEAT]] :
{
/1 Hold statements go here
}
}

See the Button Events on page 74.

CHANNEL_EVENT Defines a channel event handler. This type of handler is invoked when an output change occurs on the specified
device-channel and can only be used in the DEFINE_EVENT section of the program.

CHANNEL|[DEVI CE, CHANNEL] or

CHANNEL[(DEVCHAN[1)]

{
ON:
/1 Channel ON event handling
}
OFF:
/1 Channel OFF event handling
}
}

DEVICE refers to:

» Device - a single device number constant.

* D:P:S - a constant device specification such as TP:1:0.
CHANNEL refers to:

* Channel - a single channel number constant.
DEVCHANT] refers to a device-channel array.

Language Reference Guide - NetLinx Programming 81

Event Handler Keywords

Event Handler Keywords (Cont.)

DATA_EVENT Defines a data event handler. This type of handler processes COMMAND, STRING, ONLINE, OFFLINE and ONERROR
events. It can only be used in the DEFINE_EVENT section of the program.
DATA_EVENT[DEVI CE]

{ COMVAND:
/| Command processing goes here
}STRI NG
{ /1 String processing goes here
ONLI NE:
{ /1 OnLine processing goes here
OFFLI NE:
{ /| O fLine processing goes here
ONERROR:
{ /1 OnError processing goes here
}STANDBY:
/1 Standby processing goes here
}AV\AKE:
/1 Awake processing goes here
}
}

See the Data Events on page 76 for more information.

LEVEL_EVENT Defines a level event handler and can only be used in the DEFINE_EVENT section of the program. This type of
handler is invoked when a level change occurs on the specified device-channel. The level object is available to the
level event handler as a local variable.

LEVEL_EVENT[DEVI CE, LEVEL] or LEVEL_EVENT[([DEVLEV[])]

/1 level event handler
}

See the Level Events on page 78 for more information.

REBUILD_EVENT() This function rebuilds the NetLinx event table for level, channel, button, timeline, and data events.
« Modifications to variables used in event declarations affect NetLinx event handling when REBUILD_EVENT() is
called after the variables are modified.
* REBUILD_EVENT() works on a module-by-module basis (i.e. calling the function in one module does not affect
the event table of another module).
* REBUILD_EVENT() rebuilds the event table for variables modified in the same block of code in which it resides.
* With no braces, a REBUILD_EVENT() in DEFINE_START rebuilds event tables that use any variable modified in
DEFINE_START, above the REBUILD_EVENT() statement.
You can reduce the scope of the REBUILD_EVENT() by delineating a block with braces as shown at the bottom of
the following example:
/1 end
/1 REBU LD EVENT() rebuilds the event table for variables nodified in the sane
bl ock of code in which it resides. Wth no braces, a REBU LD _EVENT() in
DEFI NE_START shoul d rebuild the event tables that use any variable nodified in
DEFI NE_START, above the REBUI LD _EVENT() statenent.
/1 You can reduce the scope of the REBU LD_EVENT() by delineating a block with
braces:
DEFI NE_DEVI CE
dvTP = 10001:1: 0
DEFI NE_VARI ABLE
INTEGER X // | oop counter
I NTEGER nBTNS[4000]
DEFI NE_START
FOR (X = 1; X <= 4000; X++)

nBtns[X] = X

/1 the braces bel ow enclose a variable update and REBU LD _EVENT statenment in a
singl e bl ock

SET_LENGTH_ARRAY(nBt ns, 4000)
REBUI LD_EVENT()
}

Language Reference Guide - NetLinx Programming 82

Event Handler Keywords

Event Handler Keywords (Cont.)

REBUILD_EVENT() BUTTON_EVENT[dvTP, nBt ns]
(Cont.) {
PUSH:
{
...
}
}
/1 end

The code below demonstrates how to use the NetLinx REBUILD_EVENT(). function:
DEFI NE_DEVI CE

dvApocl = 128:1:0

dvApoc2 = 1505:1:0

dvApoc3 1303:1: 0

(* __ *)
(* CONSTANT DEFI NI TI ONS GO BELOW *)

(* __ ‘k)

DEFI NE_CONSTANT
DEV panel [] = {dvApocl, dvApoc2}

S S EEEEEEEEREPE PR ")
(* DEFINE TYPE DEFI NI TI ONS GO BELOW *)

K e m e m e e e e e e e e e e e e e e mm————-— *)
DEFI NE_TYPE
T *)
(* VARI ABLE DEFI NI TI ONS GO BELOW *)

(* __ ‘k)

DEFI NE_VARI ABLE
DEV cur ModApoc
*

e L L AL LU ELEPEE P LEPEEP TP R ")
(* EVENT DEFI NI TI ONS GO BELOW *)
* *
__)
DEFI NE_EVENT
BUTTON_EVENT][panel , 1]
PUSH:
{
ON[panel , 1]

cur ModApoc = dvApoc?2
/1 updates program event table to handl e BUTTON_EVENT[1505: 1: 0, 5]
REBUI LD_EVENT()

}
RELEASE: OFF[panel , 1]

}
BUTTON_EVENT[panel , 2]

{
PUSH:

{
ON[panel , 2]
cur ModApoc = dvApoc3
/'l updates programevent table to handl e BUTTON _EVENT[1303: 1: 0, 5]
REBUI LD_EVENT()
/1 the follow ng assignment has no affect on the program event table
cur ModApoc = dvApocl

}
RELEASE: OFF[panel , 2]

}

BUTTON_EVENT[cur ModApoc, 5]
PUSH: ON[dvApoc3, 5]

RELEASE: OFF[dvApoc3, 5]
}

Language Reference Guide - NetLinx Programming 83

File Operation Keywords

File Operation Keywords

NetLinx supports the following File Operation keywords:

File Operation Keywords

FILE_CLOSE

This function closes a file opened with FI LE_OPEN. This function should be called when all reading or writing to the file is
completed.
SLONG Fil e_Cl ose (LONG hFile)
Parameters:
* hFile: Handle to the file returned by FILE_OPEN.
Result:
0: Operation was successful
-1: Invalid file handle
-5: Disk I/0 error
-7: File already closed
There is a limit to the number of file handles available from the system. If files are not closed, it may not be possible to open
a file.
Result = File_d ose(hFile)

FILE_COPY

This function copies the specified file.
SLONG Fi | e_Copy(CHAR SrcFilePath[], CHAR DstFilePath[])
Parameters:
* SrcFilePath: Path name of the file to copy (source).
» DstFilePath: Path name of the copied file (destination).
Result:
0: Operation was successful
-2: Invalid file name
-5: Disk I/0 error
-11: Disk full
If either path name fails to specify a directory, the current directory is assumed. The current directory is either the top-level
directory or the subdirectory specified in the last call to FI LE_SETDI R.
/1 copy OLDFILE.TXT in the current directory to NEWI LE. TXT
Result = File_Copy(' OLDFILE. TXT', ' NEWEILE. TXT')

CHAR Buf f er [1024]
SLONG NunFiles = 1
LONG Entry = 1

WHI LE (NunFiles > 0)

{ NunFiles = FILE_DIR (' AAA:', Buffer, Entry)
Entry = Entry + 1
/1 add code to display contents of Buffer
}
FILE_CREATEDIR Creates a specified directory path.
Syntax:

SLONG File_CreateDir (CHAR DirPath[])
This function will not create the number of subdirectories needed to complete the directory path if they do not exist. The
subdirectories must be created one level at a time.
NOTE: The LONG command cannot pass negative numbers, so if you have errors these will never be
recognized. SLONG must be assigned or errors will be typecast to positive numbers.

Parameters:
« DirPath - string containing the directory path to create.
Result:
0 = operation was successful
- 4 = invalid directory path
-5 = disk I/0 error
-13 = directory name exists
Example:
File_CreateDir('\CDLIST\")
File_CreateDir('\CDLI ST\TEMP\ ")
Creates both \CDLIST and \CDLIST\TEMP subdirectories.

Language Reference Guide - NetLinx Programming 84

File Operation Keywords

File Operation Keywords (Cont.)

FILE_DELETE

This function deletes a specified file.

SLONG FI LE_DELETE (CHAR FilePath[])
Parameters:
* FilePath: Path name of the file to delete.

NOTE: Wildcard characters (* and ?) are NOT permitted in the path name. You must use actual filenames to
avoid a disk I/0 error.

NOTE: The LONG command cannot pass negative numbers, so if you have errors these will never be
recognized. SLONG must be assigned or errors will be typecast to positive numbers.

Result:
0: Operation was successful
-2: Invalid file path or name
-5: Disk I/0 error
/1 delete "nyFile.txt’ in the directory \CDLI ST\ TEMP\
Result = FILE_DELETE('\CDLI STZ\TEMP\nyFile.txt")

FILE_DIR

This function returns a list of files located at the specified path. The syntax:
SLONG FILE_DIR (CHAR DirPath[], CHAR Buffer[], LONG Entry)
Parameters:
« DirPath: String containing the path to the requested directory.
» Buffer: Buffer to hold the directory list.
* Entry: Requested directory entry.
This function returns the number of remaining files in the directory, or:
-4: Invalid directory path
-5: Disk I/0 error
-6: Invalid parameter (i.e. Entry points beyond the end of the directory, or is 0)
-10: Buffer too small
-12: Directory not loaded

NOTE: Each directory entry will have a <CR><LF> character pair appended to the end.

NOTE: The LONG command cannot pass negative numbers, so if you have errors these will never be
recognized. SLONG must be assigned or errors will be typecast to positive numbers.

Example:

CHAR Buf f er [1024]
LONG NunFiles =1
LONG Entry = 1

VH LE (NunFiles > 0)

{
NunFiles = FILE_ DIR (*\CDLIST', Buffer, Entry)
Entry = Entry + 1
/1 add code to display contents of Buffer

}

FILE_GETDIR

This function returns the current working directory.
SLONG FI LE_GETDIR (CHAR DirPath[])
Parameters:
« DirPath: Buffer to receive the current working directory.
Result:
0: Operation was successful
-10: Size of DirpPath buffer insufficient to hold directory path name
CHAR Buffer[256] Result = FILE GETDIR (Buffer)

FILE_OPEN

This function opens a file for reading or writing.
SLONG FI LE_OPEN (CHAR FilePath[], LONG I CFl ag)
Parameters:
« FilePath: String containing the path to the file to be opened
« IOFlag:

1 Read: The file is opened with READ ONLY status. The constant FILE_READ_ONLY is defined as a value of 1 for specifying
this flag.

2 R/W New: The file is opened with READ WRITE status. If the file currently exists, its contents are erased. The constant
FILE_RW_NEW is defined as a value of 2 for specifying this flag.

3 R/W Append: The file is opened with READ WRITE status. The current contents of the file are preserved and the file
pointer is set to point to the end of the file. The constant FILE_RW_APPEND is defined as a value of 3 for specifying
this flag.

If the open operation is successful, this function returns a non-zero integer value representing the handle to the file. This
handle must be used in subsequent read, write, and close operations.

>0: Handle to file (open was successful)

-2: Invalid file path or name

-3: Invalid value supplied for IOFlag

-5: Disk I/0 error

-14: Maximum number of files are already open (max is 10)

-15: Invalid file format

If the file is opened successfully, it must be closed after all reading or writing is completed, by calling FI LE_CLGSE. If files
are not closed, subsequent file open operations may fail due to the limited number of file handles available.
/1 QOpen MYFILE. TXT for reading hFile = FILE_OPEN(' MYFI LE. TXT', FI LE_READ ONLY)

Language Reference Guide - NetLinx Programming 85

File Operation Keywords

File Operation Keywords (Cont.)

FILE_READ

This function reads a block of data from the specified file.
SLONG FI LE_READ (LONG hFile, CHAR Buffer[], LONG BufLen)
Parameters:
» hFile: Handle to the file returned by FILE_OPEN
« Buffer: Buffer to hold the data to be read
* BufLen: Maximum number of bytes to read
Result:
>0: The number of bytes actually read
-1: Invalid file handle
-5: Disk I/0 error
-6: Invalid parameter
-9: End-of-file reached
This function reads (from the current location of the file pointer) the number of bytes specified by BufLen (or fewer bytes
if the end of file is reached). The bytes are read from the file identified by hFi | e and are stored in Buf f er. The file pointer

will automatically be advanced the correct number of bytes so the next read operation continues where the last operation
left off.

CHAR Buffer[1024] nBytes = FILE_READ (hFile, Buffer, 1024)

FILE_READ_LINE

This function reads a line of data from the specified file.
SLONG FI LE_READ LI NE (LONG hFile, CHAR Buffer[], LONG BufLen)
Parameters:
« hFile: Handle to the file returned by FILE_OPEN
« Buffer: Buffer to hold the data to be read
* BufLen: Maximum number of bytes to read
Result:
=0:The number of bytes actually read
-1: Invalid file handle
-5: Disk I/0 error
-6: Invalid parameter (buffer length must be greater than zero)
-9: End-of-file reached
This function reads from the current location of the file pointer up to the next carriage return or to the end-of-file (EOF),
whichever comes first. A complete line will not be read if the buffer length is exceeded before a carriage return (or EOF) is
encountered. The bytes are read from the file identified by hFi | e and are stored in Buf f er.. The <CR> or <CR><LF> pair
will not be stored in Buffer. If a complete line is read, the file pointer is advanced to the next character in the file after the
<CR> or <CR><LF> pair or to the EOF if the last line was read.
CHAR Buf f er[80] nBytes = FI LE_READ LINE (hFile, Buffer, 80)

FILE_REMOVEDIR

This function removes the specified directory path (including subdirectories), only if it is empty. If any files are present in
the directory path, the function will not work. If any file(s) exist in the directory that you are trying to remove, the operation
will return a -5 (disk IO error).

SLONG FI LE_REMOVEDI R (CHAR DirPath[])
Parameters:
« DirPath: String containing the directory path to remove.
Result:
0: Operation was successful
-4: Invalid directory path
-5: Disk I/0 error
Example:
The following code will delete the \CDLIST\TEMP directory, assuming that there are no files or subdirectories present:
FI LE_REMOVEDI R(' \ CDLI ST\ TEMP")

FILE_RENAME

This function renames the specified file.
SLONG FI LE_RENAME (CHAR Fil ePath[], CHAR NewFileNange[])
Parameters:
« FilePath: Path name of the file to rename.
* NewFileName: New file name. This name must not contain a directory path.
Result:
0: Operation was successful
-2: Invalid file name
-5: Disk I/0 error
-8: File name exists
/1 renames \ CDLI ST\ OLDFI LE. TXT to \ CDLI ST\ NEWFI LE. TXTResul t = FI LE_RENAVE
("\ CDLI ST\ OLDFI LE. TXT', ' NEWFI LE. TXT")

Language Reference Guide - NetLinx Programming 86

File Operation Keywords (Cont.)

FILE_SEEK

File Operation Keywords

This function sets the file pointer to the specified position.
SLONG FI LE_SEEK (LONG hFile, LONG Pos)
Parameters:
+ hFile: Handle to the file returned by FILE_OPEN.
* Pos: The byte position to set the file pointer (0 = beginning of file, -1 = end of file).
Result:
>=0: Operation was successful and the result is the current file pointer value
-1: Invalid file handle
-5: Disk I/0 error
-6: Invalid parameter; pos points beyond the end-of-file (position is set to the end-of-file)
After FILE_SEEK is successfully called, subsequent read or write operations begin at the byte number specified by Pos.
/Il Sets the file pointer to byte number 1000. Subsequent

/1 read or wite operations will begin at byte number 1000.
Result = FILE_SEEK (hFile, 1000)

FILE_SETDIR

This function sets the current working directory to the specified path.
SLONG FI LE_SETDIR (CHAR DirPath[1)
Parameters:
« DirPath: String containing the directory path.
Result:
0: Operation successful
-4: Invalid directory path
-5: Disk I/0 error
Result = FILE_SETDIR ('\CDLI ST\TEMP\ ')

FILE_WRITE

This function writes a block of data to the specified file.
SLONG FI LE_WRI TE (LONG hFile, CHAR Buffer[], LONG BufLen)
Parameters:
* hFile: Handle to the file returned by FILE_OPEN.
» Buffer: Buffer containing the data to write.
* BufLen: Number of bytes to write.
Result:
>0: The number of bytes actually written
-1: Invalid file handle
-5: Disk I/0 error
-6: Invalid parameter (buffer length must be greater than zero)
-11: Disk full
The data will overwrite or append to the current contents of the file depending on the current position of the file pointer.
CHAR Buf f er[1024] Result = FILE_ WRI TE (hFile, Buffer, 1024)

FILE_WRITE_LINE

This function writes a line of data to the specified file.
SLONG FI LE_WRI TE_LINE (LONG hFile, CHAR Line[], LONG LinelLen)
Parameters:
* hFile: Handle to the file returned by FILE_OPEN.
» Line: Buffer containing the line of data to write.
* LineLen: Number of bytes to write.
Result:
>0: The number of bytes actually written
-1: Invalid file handle
-5: Disk I/0 error
-6: Invalid parameter (LineLen must be greater than zero)
-11: Disk full

NOTE: A <CR><LF> character pair is automatically appended to the end of the line.
CHAR Line[80] Result = FILE_WRI TE_LINE (hFile, Line, 80)

NOTE: The LONG command cannot pass negative numbers, so if you have errors these will never be
recognized. SLONG must be assigned or errors will be typecast to positive numbers.

Language Reference Guide - NetLinx Programming

87

Get Keywords

Get Keywords

NetLinx supports the following GET keywords:

GET Keywords

GET_AVAILABLE_FLASH_

This function returns the number of bytes of flash disk space available.

DISK_SPACE Syntax:

I ong GET_AVAI LABLE_FLASH DI SK_SPACE()
GET_DNS_LIST See page 96.
GET_IP_ADDRESS See page 97.

GET_LAST

This function returns the index of the array element that most recently caused an event handler to be triggered.
DEFI NE_VARI ABLE
DEVCHAN dcwDCSet[] = { {TP,5}, {TP, 4}, {TP, 3}, {TP, 2}, {TP, 1}}

I NTEGER | ndex
BUTTON_EVENT[dcMyDCSet]
{
PUSH:
I ndex = GET_LAST(dcM/DCSet)
Swi tch (I ndex)
{
Case 1: {} (* Button 5 was pressed *)
Case 2: {} (* Button 4 was pressed *)
Case 3: {} (* Button 3 was pressed *)
Case 4: {} (* Button 2 was pressed *)
Case 5: {} (* Button 1 was pressed *)
}
}
}
Result:

* 0: No Event was triggered using this array.

* >0: The index that causes an event to be triggered.

Since the PUSH and RELEASE keywords can be written using DEVCHAN arrays, this function can also be used to
determine which element causes a push or release to be triggered. The function can be called anywhere in code
but is usually called from within an event handler. A classic application of this function is to determine the
keypad number pressed when the channel codes for the keypad are out of order, which they typically are for a
wireless transmitter.

GET_MAX_FLASH_DISK_
SPACE

This function returns the maximum number of bytes of flash disk space available.
Syntax:
I ong GET_MAX_FLASH DI SK_SPACE()

GET_PULSE_TIME

This keyword returns the current duration of PULSE and M NTOcommands as set by SET_PULSE_TI ME.
Time is measured in tenths of a second; the default is 5 (0.5 seconds).
Pul seTi me = GET_PULSE_TI ME

GET_SERIAL_NUMBER

This function returns the 16-character serial number of the specified device. The serial number of every device
is established when manufactured.

NOTE: GET_SERI AL_NUMBER only returns the serial number of the local master, not other masters
or devices.

NOTE: The LONG command cannot pass negative numbers, so if you have errors these will never be
recognized. SLONG must be assigned or errors will be typecast to positive numbers.

SLONG GET_SERI AL_NUMBER(DEV Devi ce, CHAR Seri al Nunber[])
Parameters:
* Devi ce: Device from which the serial number will be retrieved.
« Seri al Nunber : String that will receive the device's serial number.
Result:
* 0: Operation was successful
« -1: Specified device is invalid or is not online

Result = GET_SERI AL_NUMBER(128: 1: 0, seri al Num

GET_SYSTEM_NUMBER

This function returns the system number of the NetLinx Master.
| NTEGER GET_SYSTEM NUMBER()

The result is an integer representing the system number of the NetLinx Master.
SystemNum = GET_SYSTEM NUMBER() // get |ocal system num

NOTE: When it is a NetLinx function the () are NOT OPTIONAL even if there are no parameters.

GET_TIMER

This keyword returns an unsigned long integer representing the value currently held by the system timer.
» Time is measured in tenths of a second.
* The system timer is set to zero on power-up.

Systen'i me = CGET_TI MER

Language Reference Guide - NetLinx Programming

88

Get Keywords

GET Keywords (Cont.)

GET_UNIQUE_ID

This function returns a 48-bit hardware constant guaranteed to be unique in the domain of NetLinx Masters.
Possible uses for GET_UNI QUE_I Dinclude identification of a particular system for the purpose of providing
system specific capability or limiting the functionality of a NetLinx program to operate on a specific master.

CHAR[6] GET_UNIQUE_ID ()
The result is a 48-bit constant returned as a 6-element character array.

SYSID = GET_UNI QUE_I IX() /1 get the naster's h/w ID

I F(sysI D = "$00, $01, $09, $73, $25, $01")

{

/1 allow systemto operate nornally

}

GET_URL_LIST

This function returns a list of URLs that the specified device is programmed to actively attempt to connect to.
The function requires an array of URL_STRUCT Structures that will get filled in with the device's URL list.
SLONG Get _URL_Li st (DEV Devi ce, URL_STRUCT Url List[],!|NTEGER Type)

Parameters:

» Devi ce: Device number of the device from which the URLs will be retrieved. Typically, they are stored on the
local master (0:1:0), but if you are currently connected to another master your can use <0:1:system number
of remote master>.

* Url List:Array of URL_STRUCTSs that will receive the device's URLs

* Type: Indicates the type(s) of URLs desired-NetLinx language programmed, IDE programmed, or both
1: All URLs
2: NetLinx programmed URLs
3: IDE programmed URLs

The function returns the number of URLs updated in the supplied array of URL_STRUCTS.

-1: Specified device is invalid or is not online
-2: Request timed out
-3: Busy

URLs may be programmed by either the Integrated Development environment or via the ADD_URL_ENTRY

function. The Type parameter filters the list of URLs so that only the desired URLs are returned in the

URL_STRUCT(s). The function requires an array of URL_STRUCTS.

The URL_STRUCT is predefined as follows:

STRUCTURE URL_STRUCT

{
CHAR Fl ags; /'l Connection Type (normally 1)
I NTEGER Port; /1 TCP port (normally 1319)
CHAR URL[128] ; I/ string: URL or |P address
CHAR User [20] ; /'l optional account info for |CSPS
CHAR Passwor d[20] ; /1 optional account info for |CSPS
}
The following definitions exist for the Flags member of the URL_STRUCT structure.
CONSTANT CHAR URL_Flg_TCP = 1 /1 TCP connection

CONSTANT CHAR URL_Fl g TEMP = $10
CONSTANT CHAR URL_FI g_Stat_PrgNetLinx = $20 // URL set by

/1 Net Li nx

// ADD_URL_ENTRY
CONSTANT CHAR URL_FI g_Stat _Mask = $C0 /1 status mask
CONSTANT CHAR URL_FI g_Stat _Lookup = $00 /1 Looking up IP

CONSTANT CHAR URL_FI g_Stat _Connecting = $40 // connecting
CONSTANT CHAR URL_FI g_Stat _Waiting = $80 /1 waiting
CONSTANT CHAR URL_FI g_Stat _Connected = $C0 // connected
See GET_URL_LIST Flags Member Bit Fields below.

Example:

URL_STRUCT Url List [10]

Result = GET_URL_LI ST(0:0:0, Url Li st, 0) (* Get ALL URLs *)
—or-

Result = GET_URL_LI ST(0:0:0, UrlList,1) (* Get NetLinx-programmed URLs *)
—or-

Result = GET_URL_LI ST(0:0:0, UrlList,2) (* Get |DE-progranmed URLS *)

NOTE: There is a known issue with this function: If you have only 1 URL entry, it will return nothing.
If you have 2 entries, it will return the second entry.

Language Reference Guide - NetLinx Programming

89

Get Keywords

GET_URL_LIST Flags Member Bit Fields
The Flags member is a bit field that is used for several different purposes. Each bit is defined in the table below:

GET_URL_LIST Flags Member Bit Fields

Bit 7 | 128 (0x80)

Mathematical Normal

Bit Value value Meaning

Bit 0 | 1 (0x01) 1 0 = Establishes a UDP connection.
1 = Establishes a TCP connection.

Bit 1 | 2 (0x02) 0 Unused

Bit 2 | 4 (0x04) 0 Unused

Bit 3 | 8 (0x08) 0 Unused

Bit4 | 16 (0x10) 0 Establishes a Temp Connection. A Temp Connection is one that is set, but is not stored in flash, and therefore is
not restored when the master reboots.
If the NetLinx code is adding URL entries, it is recommended to make them temporary so that the flash is not
constantly being written, especially since the code handles all the connections anyway.

Bit 5 | 32 (0x20) 0 Source of URL.
0 = Programmed by the IDE.
1 = Programmed by NetLinx ADD_URL_ENTRY.

Bit 6 | 64 (0x40) 0 Encoded status indication (Read only).

These 2 bits together form one of 4 possible codes indicating the status of the connection.
¢ 0x00 - Looking up IP address or URL.

* 0x40 - Connecting to URL.

* 0x80 - Waiting for connection to establish.

* 0xCO - Connected.

Language Reference Guide - NetLinx Programming

90

IP Keywords

IP Keywords

Overview - IP Communication

Clients and servers communicate via Internet Protocol (IP) using either a connection-oriented or connection-less protocol.
Connection-oriented input/output (I/0) channels require a connection or virtual circuit to be established between the client and
server before data can be transmitted or received. Transmission Control Protocol (TCP) is the transport protocol typically used for
connection-oriented I/0. With TCP, delivery of the data is guaranteed.

With connection-less I/0, a connection is not established between the client and server before data is exchanged. Instead, the
identity of the client and server is established each time data is sent or received. This type of communication is usually
recommended for applications that transfer only small amounts of data. User Datagram Protocol (UDP) is the transport protocol
used for connection-less I/0. With UDP, delivery of the data is not guaranteed. Both the client and server must be able to identify
incoming and outgoing data for a particular conversation. To achieve this, each application assigns a unique number to the
conversation. This number is the local port number. A local port is not a physical port but rather a virtual port that identifies the
source or destination for data exchanged during the conversation. Local ports are specific to either the client or the server; they
need not match across applications.

The application assigns the number for the local port - as opposed to letting the system assign it (for instance, as the return value
for IP_CLIENT_OPEN or IP_SERVER_OPEN) - to satisfy the static nature of DEFINE_EVENT handlers. All event handlers must specify
a device, port, and system to identify the events' source. This device information must be constant; that is, it cannot change at run-
time. A constant IP device specification can be defined using a local port number.

For example:

Devi ce Number = 0 The naster

Port = Local Port The | ocal port nunber

System = 0 This system (where the application is running)

A range of numbers is reserved for local port numbers to make sure that this IP device-naming convention does not interfere with
future naming schemes. The program can only assign local port numbers at or above the value of the keyword,

FI RST_LOCAL_PORT. All port numbers below FI RST_LOCAL_PORT are reserved for future use.

For example:

DEFI NE_CONSTANT
PORT_REMOTE_NMASTERL
PORT_REMOTE_NMASTER2
PORT_REMOTE_MASTER3

Client Programming

Initiating a conversation
To initiate a conversation with a server, the client must use the IP_CLIENT_OPEN command and supply either the IP address or
domain name of the server and a port number for the requested service. The client must also specify a local port number to use for
sending and receiving data. This number represents a virtual port on the client machine; it is not the actual port number used to
create the client-end socket. A local port number may not be used in another call to IP_CLIENT_OPEN until IP_CLIENT_CLOSE is
called for that port number.
The syntax is shown below:
I P_Cient_Open(Local Port, ServerAddress, ServerPort, Protocol)
Parameters:
e LocalPort: A user-defined, non-zero integer value representing the virtual port on the client machine that will be used for
this conversation. This port number must be passed to IP_CLIENT_CLOSE to close the conversation.
e ServerAddress: A string containing either the IP address (in dotted-quad-notation) or the domain name of the server to
connect to.

FI RST_LOCAL_PORT
FI RST_LOCAL_PORT + 1
FI RST_LOCAL_PORT + 2

e ServerPort: The port number on the server that identifies the program or service the client is requesting.
e Protocol: The transport protocol to use (1 = TCP, 2 = UDP). If this parameter is not specified, TCP (1) is assumed. The
constants IP_TCP and IP_UDP can be used to specify this parameter.
Terminating a conversation

To terminate a conversation, you must use the IP_CLIENT_CLOSE command and pass the number of the local port used for the
conversation.
The syntax:
IP_Cdient_d ose(Local Port)
Parameters:

e LocalPort: A user-defined, non-zero integer value representing the virtual port on the client machine that will be used for
this conversation.

Language Reference Guide - NetLinx Programming 91

IP Keywords

Sending data

To send data to the server, use the SEND_STRING command.
SEND_STRI NG 0: Local Port: 0, '<string>'

The device specification (0:LocalPort:0) is interpreted as follows:
e Device Number: 0: The master
e Port: LocalPort: The local port number
e System: 0: This system (the client)

Receiving data

To receive data from the server, use a DATA event handler or a buffer created with CREATE_BUFFER or CREATE_MULTI_BUFFER. If
an event handler is used, the data is located in the Text field of the DATA object. The syntax is shown below:
Dat a_Event [Devi ce]

{
STRI NG
{

/'l process incomng string (Data. Text)
}

}

Parameters:

e Devi ce is (or contains as part of an array) the device representing the conversation (0:LocalPort:0)

When using IP sockets in NetLinx, it is not uncommon to create a buffer using a CREATE_BUFFER keyword and processing the
buffer in the DATA_EVENT...OFFLINE event. NetLinx has an important behavior than can affect the performance of IP socket code.
This is not a bug but a feature. If you are aware of it, you can write your code to take maximum advantage of the speed NetLinx
offers. When processing string data from a device, whether it is a regular device or an IP socket, the master will attempt to copy this
data to a buffer, if one has been created using the CREATE_BUFFER keyword, and then try to run a DATA_EVENT...STRING handler
for this device.
If a DATA_EVENT...STRING handler does not exist, NetLinx will run mainline to allow for any buffer processing that might occur in
mainline. At the end of a conversation with an IP device, there will usually be an incoming string event followed by an offline event.
The NetLinx master will copy the string to a buffer, if it exists, check for a string event handler, run mainline if one does not exist,
then process the offline event.
If you are processing that data in an offline event for an IP device, you will see a time delay between the IP device or server closing
the connection and the processing of the offline event. This delay will vary with the size and complexity of mainline. To eliminate
this delay, simply include and empty string event handler in the DATA_EVENT section. This will keep NetLinx from running mainline
between the last incoming string and the offline event. See this example:

DATA_EVENT[dvl P]

OFFLI NE:

(* PROCESS THE DATA HERE*)
}

STRI NG

(* DO NOT REMOVE ME! *)

}
}

Language Reference Guide - NetLinx Programming 92

IP Keywords

Server Programming

Listening for client requests

A client gains access to a service by sending a request to the server specifying the port assigned to the service. For the request to
be acknowledged, the server must be listening on that port. To do this, the server calls IP_SERVER_OPEN. This opens the port and
allows the server to listen for requests from client applications. IP_SERVER_OPEN requires the caller to supply a local port number.
This local port number is a virtual port, as opposed to an actual physical port on the server.
e When TCP is the transport protocol, the local port represents a single client connection on the server's physical port.
e When UDP is the transport protocol, it represents a single point where all client requests on the associated port are routed.
The local port number is the key to identifying data sent to or received from a client application. A local port number may not be
used in another call to IP_SERVER_OPEN, until IP_SERVER_CLOSE is called for that port number.
The syntax:
| P_SERVER_OPEN(Local Port, ServerPort, Protocol)
Parameters:
e LocalPort: The local port number to open. This port number must be passed to IP_CLIENT_CLOSE to close the
conversation.
e ServerPort: The port number on the server identifies the program or service the client is requesting.
e Protocol: The transport protocol to use (1 = TCP, 2 = UDP). If this parameter is not specified, TCP (1) is assumed. The
constants IP_TCP and IP_UDP can be used to specify this parameter.

Multiple client connections

With connection-oriented I/0 (TCP), more than one client could request a connection with the server at the same time. Support for
multiple client connections applies only to connection-oriented I/0, that is, TCP protocol. Opening multiple ports using UDP as the
protocol serves no purpose. In that case, any additional open commands will fail.

To support concurrent requests, the server must call IP_SERVER_OPEN once for each simultaneous connection allowed. For
example:

| P_SERVER OPEN (First_Local _Port, 10510, |P_TCP)
| P_SERVER OPEN (First_Local _Port, 10510, |P_TCP)
| P_SERVER OPEN (First_Local _Port, 10510, |P_TCP)

This allows three simultaneous connections on port 10510. Note that each call to | P_SERVER _OPEN uses a different local port
number.

Closing a local port

To close a local port, the server application must call IP_SERVER_CLOSE. Once that is called, no I/0 can be handled using the
specified local port. The syntax:

| P_SERVER_CLGOSE(Local Port)
Parameters:

e Local Port: The local port number to close.
Connection-Oriented notifications
The server receives the following notifications when a client connects or disconnects.

The protocol in this case must be TCP.
DATA[0: Local Port: 0]

{
ONLI NE:
/1 client has connected
}
OFFLI NE:
/1 client has disconnected
}
}
Parameters:

e Device is (or contains as part of an array) the device representing the conversation (0:LocalPort:0).

Receiving data

To receive data from a client, use a DATA event handler or a buffer created with CREATE_BUFFER or CREATE_MULTI_BUFFER. If an
event handler is used, the data is located in the Text field of the DATA object.

The syntax:

Dat a_Event [Devi ce]

{
STRING

{

/'l process incom ng string (Data. Text)

}

Language Reference Guide - NetLinx Programming 93

IP Keywords

Parameters:
e Device is (or contains as part of an array) the device representing the conversation (0:LocalPort:0).

Sending data
To send data to the client, use the SEND_STRING command.
SEND_STRI NG 0: Local Port: 0, '<string>'
The device specification (0:LocalPort:0) is interpreted as follows:
e Device Number: 0: The master
e Port: LocalPort: The local port number
e System: 0: This system (the client)

Receiving Data with UDP

Since UDP is connection-less, no formal agreement has been made between the client and server to exchange data. The client
simply sends a UDP message and hopes the server is listening. In many protocols that use UDP for communication, there is an
implied agreement for the client to receive date from the server. When a UDP client socket in created, the socket is assigned a UDP/
IP port number, not to be confused with local port. This UDP/IP port will be used to send UDP messages. The server, if listening, will
receive this message along with the IP address and UDP/IP of the client who sent the message.
Some UDP protocols have an implied agreement that the server will be able to respond to the client by sending a response back to
the IP address and UDP/IP from where the message originated. Although the UDP protocol does not specify that the client must
expect to receive messages in this way, many UDP/IP require the client to listening for response after sending a message.
NetLinx has two UDP client implementations. These are UDP (2) and UDP With Receive (3).
e UDP only sends message and cannot receive messages.
e UDP with Receive will send and receive messages on a single UDP/IP port.

It may seem like UDP (2) is not needed; however, it still serves and important purpose. Imagine you wanted to send a UDP message
and expect a response. The proper way to open this type of socket, assuming you want to send a UDP message to 192.168.0.1 on
UDP/IP port 6000, is:

| P_CLI ENT_OPEN(dvUDPCl i ent , ' 192. 168. 0. 1', 6000, | P_UDP_2WAY)
Now, if you were also writing the code for 192.168.0.1, you would need to have opened a UDP server using the following:

| P_SERVER_OPEN(dvUDPSer ver, 6000, | P_UDP)
When the message is received at 192.168.0.1, the message will be delivered to the DATA_EVENT for dvUDPServer and the IP
address UDP/IP port of the sender of the message will be available in the DATA.SOURCEIP and DATA.SOURCEPORT variables. A UDP
(2) socket would be used in this case to send a response to the client. Since we will no longer need to listen after sending the
response, since there would be no response to the response, we would open the socket using the following:

| P_CLI ENT_OPEN(dvUDPC i ent, DATA. SOURCEI P, DATA. SOURCEPORT, | P_UDP)

Note that UDP with Receive (3) is only available when calling IP_CLIENT_OPEN.

Multicast
NetLinx can send and receive multi-cast UDP messages. To send a multi-cast UDP message, all you need to do is specify a multi-
cast address and port in the IP_CLIENT_OPEN function such as the following:
| P_CLI ENT_OPEN (dvlPdient.Port,"'239.255. 255. 250", 1900, | P_UDP)
To receive multi-cast UDP messages, you must call the IP_MC_SERVER_OPEN function:
| P_MC_SERVER OPEN (dvl PServer, "' 239. 255. 255. 250", 1900)
The NetLinx master will join the multi-cast session and allow you to receive and transmit UDP multi-cast messages.

Example IP Code
PROGRAM NAMVE=' | PExanpl e’

(***)

(* DEVI CE NUMBER DEFI NI TI ONS GO BELOW *)
(*****9(*9(*9(***)
DEFI NE_DEVI CE

dvliPServer = 0:2:0

dviPClient = 0:3:0

(***)

(* CONSTANT DEFI NI TI ONS GO BELOW *)

(***)

DEFI NE_CONSTANT

nl PPor t = 8000
(*****9(***)
(* VARI ABLE DEFI NI TI ONS GO BELOW *)

(***)

DEFI NE_VARI ABLE

| P_ADDRESS_STRUCT Myl PAddr ess (* .Flags *)
(* . Host Nane *)
(* .1 PAddress *)
(* . Subnet Mask *)
(* . Gateway *)

Language Reference Guide - NetLinx Programming 94

IP Keywords

(***)

(* STARTUP CODE GOES BELOW *)

(***)

DEFI NE_START

(* Get My | P Address *)

GET_| P_ADDRESS(0: 0: 0, Myl PAddr ess)

(* Open The Server *)

| P_SERVER_OPEN(dvl PServer. Port, nl PPort, | P_TCP)

(* Open The dient *)

| P_CLI ENT_OPEN(dvI PCli ent. Port, Myl PAddr ess. | PAddr ess, nl PPort, | P_TCP)

(***)

(* THE EVENTS GO BELOW *)

(***)

DEFI NE_EVENT
(* Server Data Handler *)
DATA_EVENT[dvl PSer ver]

{
ONERROR:
SEND_STRING 0, "' error: server=",|TOA(Data. Nunber)"
}
ONLI NE:
{
SEND_STRING 0, "' online: server'"
}
OFFLI NE:
SEND _STRING 0, "' of fline: server'"
}
STRI NG
{
SEND_STRING 0, "'string: client=", Data. Text"
| F (FI ND_STRI NG Dat a. Text, ' ping', 1))
SEND_STRI NG 0:2: 0, "' pong' , 13"
}
}

(* dient Data Handler *)
DATA_EVENT[dvI POl i ent]

{
ONERROR:
{
SEND STRING 0, "' error: client=",1TOA(Data. Nunber)"
}
ONLI NE:
{
SEND STRING 0,""'online: client'"
}
OFFLI NE:
{
SEND_STRING 0, "' of fline: client'"
}
STRI NG
{
SEND_STRING 0, "'string: client=",6 Data.Text"
}
}

(***)

(* THE ACTUAL PROGRAM GCES BELOW *)

(***)

DEFI NE_PROGRAM
(* Send Ping To Server *)
VAIT 50
SEND_STRI NG dvI PCli ent, "' ping', 13"

(***)

(* END OF PROGRAM *)
(* DO NOT PUT ANY CODE BELOW THI'S COVVENT *)

(***)

Language Reference Guide - NetLinx Programming 95

IP Keywords

NetLinx supports the following

IP Keywords

IP keywords:

IP Keywords

ADD_URL_ENTRY

This function adds a URL entry to the specified device. This function requires a pre-initialized URL_STRUCT that
will be sent to the specified device.
SLONG ADD_URL_ENTRY (DEV Device, URL_STRUCT Url)

Parameters:

» Device: Device number of the device that stores the URL.
Typically, it is stored on the local master (0: 1: 0) ; If you are currently connected to another master, you can
use <0: 1: syst em nunber of renote naster>.

e Url: URL_STRUCT that will be programmed into the device.

Result:

¢ 0:Success

-1: Specified device is invalid or is not online

-2: Time out occurred

-3: Function is already actively adding a URL entry (i.e. busy)

-4: Add failed

Note that NetLinx will automatically set bit 5 of the Flags member of the URL_STRUCT structure.

See the ADD_URL_ENTRY Flags Member Bit Fields section on page 100 for details.

.
.
.
.

DELETE_URL_ENTRY

This function deletes a URL entry to the specified device. This function requires a pre-initialized URL_STRUCT that
will be sent to the specified device.
SLONG DELETE_URL_ENTRY (DEV Devi ce, URL_STRUCT Url)
Parameters:
« Device: Device to which the URL will be sent.
« Url: URL_STRUCT that will be programmed into the device.
Result:
¢ 0:Success
* -1: Specified device is invalid or is not online
e -2:Time out occurred
« -3: Function is already actively deleting a URL entry (i.e. busy)
* -4: Delete failed

See the ADD_URL_ENTRY Flags Member Bit Fields section on page 100 for details.

GET_DNS_LIST

This function returns the domain name and list of DNS server IP addresses that the specified device is

programmed to utilize. The order of the returned list is the preferred server order.
DNS_STRUCT DnsListresult = GET_DNS_LI ST(0: 0: 0, DnsLi st)
SLONG GET_DNS_LI ST(DEV Devi ce, DNS_STRUCT DnsLi st)

Parameters:

« Device: Device from which the DNS servers will be retrieved.

* DnsList: A DNS_STRUCT that will receive the device's DNS server list.

Result:

* 0: Operation was not successful

» -1: Specified device is invalid or is not online

* -2:Request timed out

¢ -3:Busy

The function requires a DNS_STRUCT. The DNS_STRUCT is predefined as follows:
STRUCTURE DNS_STRUCT

{
CHAR Domai nNane[68] // domain suffix (e.g. anx.com
CHAR DNS1[15] /1 1P address of 1st DNS server
CHAR DNS2[15] /1 1P address of 2nd DNS server
CHAR DNS3J[15] /1 1P address of 3rd DNS server
}

Language Reference Guide - NetLinx Programming

96

IP Keywords

IP Keywords (Cont.)

GET_IP_ADDRESS

This function returns the TCP/IP configuration of the specified device. The configuration information includes

DHCP/Static configuration, IP address, subnet mask, gateway, and host name.
SLONG GET_| P_ADDRESS(DEV Devi ce, | P_ADDRESS_STRUCT | PAddr ess)

Parameters:

« Device: Device from which the TCP/IP configuration will be retrieved.

« IPAddress: An IP_ADDRESS_STRUCT that will receive the device's TCP/IP configuration.

Result:

* 0: Operation was successful

« -1: Specified device is invalid or is not online

¢ -2:Request timed out

¢ -3:Busy

The function requires an IP_ADDRESS_STRUCT. The IP_ADDRESS_STRUCT is predefined as follows:
STRUCTURE | P_ADDRESS_STRUCT

{
CHAR FI ags /1 Configuration flags
CHAR Host Nane[128] // Host nane
CHAR | PAddress[15] // |P address unit
CHAR Subnet Mask[15] // subnet mask
CHAR Gat eway|[15] /1 1P address of gateway
}

The following definitions exist for the Flags member of the | P_ADDRESS_STRUCT structure.

CONSTANT CHAR | P_Addr _Fl g DHCP = 1 // Use DHCP
The Flags member is a bit field that may be used for several different purposes. See the GET_IP_ADDRESS Flags
Member Bit Fields section on page 101 for details.Differing configuration parameters may be obtained, depending
upon the configuration of the network DHCP server. It is possible that the DHCP server will provide the host
name, IP address, subnet mask, gateway, and even DNS information. In a minimal configuration, the DHCP server
will only supply the IP address and subnet mask.

| P_ADDRESS_STRUCT | PAddressResult = GET_I P_ADDRESS(0: 0: 0, | PAddr ess)

IP_BOUND_CLIENT_OPEN

Opens a port for IP communication with a server using a specific local IP port number. Similar to
IP_CLIENT_OPEN, but where IP_CLIENT_OPEN uses the first available local IP Port number,
IP_BOUND_CLIENT_OPEN allows the user to specify the local IP port number.
The syntax:
SLONG | P_BOUND_CL| ENT_OPEN
(I NTEGER Local Port, |NTEGER Local | PPort, CHAR Server Address[], LONG ServerPort,
| NTEGER Prot ocol)

NOTE: The LONG command cannot pass negative numbers, so if you have errors these will never be
recognized. SLONG must be assigned or errors will be typecast to positive numbers.

Parameters:

« LocalPort - a user-defined (non-zero) integer value representing the local port on the client machine to use for
this conversation. This local port number must be passed to IP_CLIENT_CLOSE to close the conversation.

« LocalIPPort - a user-defined (non-zero) integer value representing the local IP port number the IP client
socket must be bound to.

« ServerAddress - a string containing either the IP address (in dotted-quad-notation) or the domain name of the
server to connect to.

« ServerPort - the port number on the server that identifies the program or service that the client is requesting.

* Protocol - The transport protocol to use:

3 = UDP with Receive
If this parameter is not specified, TCP (1) is assumed. The constants IP_TCP, IP_UDP and IP_UDP_2WAY can
be used to specify this parameter.
Result:
* This function always returns 0.
« Errors are returned via the DATA_EVENT ONERROR method.
The following errors may be returned:
2: General failure (out of memory)
4: Unknown host
6: Connection refused
7: Connection timed out
8: Unknown connection error
14: Local port already used
16: Too many open sockets
17: Local Port Not Open
Example:
| P_BOUND_CLI ENT_OPEN(PORT1, 3000, SvAddr, SvPort, |P_TCP)

IP_CLIENT_CLOSE

This function closes a port opened with | P_CLI ENT_OPEN.

| P_CLI ENT_CLOSE (I NTECER Local Port)
Parameters:
« LocalPort: A non-zero integer value representing the local port on the client machine to close.
Result:
« This function always returns 0.
* Errors are returned via the DATA_EVENT ONERROR method.
The following error may be returned:

9: Already closed

Language Reference Guide - NetLinx Programming 97

IP Keywords

IP Keywords (Cont.)

IP_CLIENT_OPEN

This function opens a port for IP communication with a server.
SLONG | P_CLI ENT_OPEN
(I NTEGER Local Port,
CHAR Server Address[],
LONG Server Port,
| NTEGER Protocol)
Parameters:
* LocalPort: A user-defined (non-zero) integer value representing the local port on the client machine to use for
this conversation. This local port number must be passed to IP_CLIENT_CLOSE to close the conversation.
* ServerAddress: A string containing either the IP address (in dotted quad-notation) or the domain name of the
server to connect to.
« ServerPort: The port number on the server that identifies the program or service the client is requesting.
« Protocol: The transport protocol to use:
1=TCP
2 =UDP
3 = UDP with Receive
If this parameter is not specified, TCP (1) is assumed. The constants | P_TCP, | P_UDP and | P_UDP_2WAY can
be used to specify this parameter.
Result:
« This function always returns 0.
< Errors are returned via the DATA_EVENT ONERROR method.
The following errors may be returned:
2: General failure (out of memory) - Underlying OS socket call failed, reasons undefined.
4: Unknown Host (IP_CLIENT_OPEN) - The specified host name (ex. 'www.amx.com') or IP address (ex.
'192.168.200.75") is not resolvable to a physical host.
6: Connection Refused (IP_CLIENT_OPEN) - The specified host does not have a server socket listening on the
requested port and therefore refused the connection.
7: Connection Timed Out (IP_CLIENT_OPEN) - The specified host has not replied to the request to connect
within a reasonable time.
8: Unknown connection Error (IP_CLIENT_OPEN) - Some other undefined error has occurred with the
connection request.
9: Already Closed (IP_CLIENT_CLOSE/IP_SERVER_CLOSE) - The specified connection has already been closed.
10: Binding Error (IP_SERVER_OPEN) - An error has occurred during the underlying OS "bind" function of a
socket to a server port number. Possibly the server port is already being listened on.
11: Listening Error (IP_SERVER_OPEN) - An underlying error has occurred; checking for possible client
connects to a server socket.
12: Socket not connected - Tried to send data (string or command) on a TCP socket that is not connected
either because the open failed, or the connection has been closed.
13: Send to Socket Unknown- Tried to send data (string or command) on a UDP socket that has failed to open.
14: Local Port already used (IP_CLIENT_OPEN/IP_SERVER_OPEN) - The local TCP client or serve port (D:P:S)
is already open for use by an earlier IP_CLIENT_OPEN or IP_SERVER_OPEN
15: UDP socket already listening (IP_SERVER_OPEN) - The local UDP port (D:P:S) is already being listened on.
16: Too many open sockets (IP_CLIENT_OPEN/IP_SERVER_OPEN) - NetLinx enforces a limit on the number of
allowed open sockets. The current limit is 200. All requests to open a socket beyond this limit will fail.
17: Local port not open - The specified local port (D:P:S) has never been opened by a IP_CLIENT_OPEN or
IP_SERVER_OPEN call.
Example:
| P_CLI ENT_OPEN(PORT1, SvAddr, SvPort, |P_TCP)

IP_MC_SERVER_OPEN

This function opens a server port to listen for UDP multicast messages.

SI NTEGER | P_MC_SERVER OPEN(| NTEGER Local Port, CHAR Multi CastlI P[], LONG ServerPort)
Parameters:
* LocalPort: The local port number to open. This number must be passed to IP_SERVER_CLOSE to close the port.

« MultiCastIP: A character string representing the multicast address to receive on in the form of:
'239.255.255.250'.

« ServerPort: The UDP multicast port number to listen on.
Result:
« This function always returns 0.
« Errors are returned via the DATA_EVENT ONERROR method.
The following errors may be returned:
2: General failure (out of memory) - Underlying OS socket call failed, reasons undefined

10: Binding error - An error has occurred during the underlying 0S "bind" function of a socket to a server port
number. Possibly the server port is already being listened on.

11: Listening error - An underlying error has occurred checking for possible client connects to a server socket.

14: Local port already used - The local TCP client or serve port (D:P:S) is already open for use by an earlier
IP_CLIENT_OPEN or IP_SERVER_OPEN.

15: UDP socket already listening - The local UDP port (D:P:S) is already being listened on.

16: Too many open sockets - NetLinx enforces a limit on the number of allowed open sockets. The current limit
is 200. All requests to open a socket beyond this limit will fail.

Example:
| P_MC_SERVER_OPEN (PORT1, ' 239. 255. 255. 250" , 1900)

Language Reference Guide - NetLinx Programming

98

IP Keywords (Cont.)
IP_SERVER_CLOSE

IP Keywords

This function closes a port opened with IP_SERVER_OPEN or IP_MC_SERVER_OPEN.
| P_SERVER CLCSE (I NTEGER Local Port)
Parameters:
* LocalPort: The number of the local port to close.
Result:
« This function always returns 0.
« Errors are returned via the pata_event ONERROR method.
The following error may be returned:
9: Already closed
Example:
| P_Server _C ose(PORT1)

IP_SERVER_OPEN

This function opens a server port to listen for client requests.
SLONG | P_SERVER OPEN (| NTEGER Local Port,
LONG ServerPort,
I NTEGER Pr ot ocol)
Parameters:
* LocalPort: The local port number to open. This number must be passed to IP_SERVER_CLOSE to close the port.
« ServerPort: The number of the server port to listen on.
* Protocol: The transport protocol to use:
1=TCP
2 =UDP
If this parameter is not specified, TCP (1) is assumed. The constants | P_TCP and | P_UDP can be used to
specify this parameter.
Result (via ONERROR event):
2: General Failure - Underlying OS socket call failed, reasons undefined
10: Binding error - An error has occurred during the underlying 0S "bind" function of a socket to a server port
number. Possibly the server port is already being listened on.
11: Listening error - An underlying error has occurred checking for possible client connects to a server socket.

14: Local port already used - The local TCP client or serve port (D:P:S) is already open for use by an earlier
IP_CLIENT_OPEN or IP_SERVER_OPEN.

15: UDP socket already listening - The local UDP port (D:P:S) is already being listened on.
16: Too many open sockets - NetLinx enforces a limit on the number of allowed open sockets. The current limit
is 200. All requests to open a socket beyond this limit will fail.

Example:
| P_SERVER_OPEN (PORT1, SvPort,

I P_TCP)

IP_SET_OPTION

Allows for specific option settings on IP client or server connections.
The syntax:
| P_SET_OPTI ON
(I NTEGER Local Port, | NTEGER Optionl D, | NTEGER Opti onVal ue)
Parameters:
« LocalPort - a user-defined (non-zero) integer value representing the local port on the client machine to use for

this conversation. This local port number was previously specified in an IP_CLIENT_OPEN (page 100) or
IP_SERVER_OPEN (page 101) call.
« OptionID - Identifier value for the option to be set. Current valid option IDs are:
IP_MULTICAST_TTL_OPTION - Set the time-to-live value for all outbound UDP Multicast packet transmissions
on the specified port. Predefined constant option values are:
IP_TTL_SUBNET = 1
IP_TTL_SITE = 32
IP_TTL_REGION = 64
IP_TTL_CONTINENT = 128
IP_TCP_NODELAY_OPTION - Outgoing TCP data is transmitted immediately. (default = OFF):
IP_NODELAY_ON - When the NODELAY option is ON, all data is transmitted immediately upon send. This
ensures that no data will be left in transmit buffers upon closure of the connection.
IP_NODELAY_OFF - By default, the NODELAY option is disabled (OFF). Data will be buffered, and transmission is
determined by the operating system.
* OptionValue - Integer containing the option value.
Example:
| P_SET_OPTI ON(PORT1, | P_MULTI CAST_TTL_OPTI ON, | P_TTL_REG ON)

Language Reference Guide - NetLinx Programming

99

IP Keywords

IP Keywords (Cont.)

SET_IP_ADDRESS This function programs the TCP/IP configuration of the specified device. This function requires a pre-initialized
| P_ADDRESS_STRUCT structure that will be sent to the specified device.
SLONG SET_| P_ADDRESS(DEV Devi ce, | P_ADDRESS STRUCT | PAddr ess)

NOTE: SET_| P_ADDRESS takes effect after the system is rebooted.

Parameters:
« Device: Device to which the IPAddress list will be sent.
« IPAddress: An IP_ADDRESS_STRUCT containing the desired TCP/IP configuration for the specified device.
Result:
* 0: Operation was successful.
» -1: Specified device is invalid or is not online.
« -2:Time out occurred.
« -3: Function is already actively attempting to set an IP Address (i.e. busy).
See GET_| P_ADDRESS, on page 97, for a description of the | P_ADDRESS_STRUCT structure.
| P_ADDRESS_STRUCT | PAddr ess
| PAddr ess. Fl ags = 0 /] use static IP address
| PAddr ess. Host Nane = ' Net Li nx1' /1 host nane
| PAddr ess. | PAddress = ' 19. 00. 100. 00'
| PAddr ess. Subnet Mask = ' 255. 255. 255. 0
| PAddr ess. Gateway = ' 19.00.100. 01"
Result = SET_| P_ADDRESS(0: 0: 0, | PAddress) // config master

SET_DNS_LIST This function programs a domain name and the list of DNS servers that the specified device will use to lookup
domain names. It requires a pre-initialized DNS_STRUCT structure that will be sent to the specified device.
SLONG SET_DNS_LI ST(DEV Devi ce, DNS_STRUCT DnsLi st)
Parameters:
» Device: Device to which the DNS list will be sent
* DnsList: A DNS_STRUCT that contains the list of DNS server IP addresses that will be programmed in to the
device
Result:
0: Operation was successful
-1: Specified device is invalid or is not online
-2: Time out occurred
-3: Function is already actively attempting to set a DNS list (i.e. busy)
-4: Set DNS failed
-5: A portion of the DNS structure contains invalid information
DNS_STRUCT DnsLi st
DnsLi st . Domai nNane = ' anx. coni
DnsList.DNS1 = ' 19. 00. 100. 00'
DnsList.DNS2 = "'
DnsList.DNS3 = "'

Result = SET_DNS_LI ST(0:0:0, DnsList) // set master's list
See GET_DNS_LI ST, on page 96, for a description of the DNS_STRUCT structure.

ADD_URL_ENTRY Flags Member Bit Fields

The Flags member is a bit field that is used for several different purposes, as defined below:

ADD_URL_ENTRY Flags Member Bit Fields

Mathematic Normal
Bit Value Value Meaning
Bito| 1 (0x01) 1 0 = Establishes a UDP connection.
1 = Establishes a TCP connection.
Bit 1 2 (0x02) 0 0 = Account information not included
1 = Include account information (User Name / Password) required to connect to remote URL
Bit2| 4 (0x04) 0 Unused
Bit3| 8 (0x08) 0 Unused
Bit4 | 16 (0x10) 0 Establishes a Temp Connection. A Temp Connection is one that is set, but is not stored in flash, and

therefore is not restored when the master reboots. If the NetLinx code is adding URL entries, it is
recommended to make them temporary so that the flash is not constantly being written, especially
since the code handles all the connections anyway.

Bit5 | 32 (0x20) 0 Source of URL.

0 = Programmed by the IDE.

1 = Programmed by NetLinx ADD_URL_ENTRY.

Bit6 | 64 (0x40) 0 Encoded status indication (Read only).

These 2 bits together form one of 4 possible codes indicating the status of the connection.
¢ 0x00 - Looking up IP address or URL.

* 0x40 - Connecting to URL.

* 0x80 - Waiting for connection to establish.

* 0xCO - Connected.

Bit7 | 128 (0x80) 0x00

Language Reference Guide - NetLinx Programming 100

IP Keywords

GET_IP_ADDRESS Flags Member Bit Fields
The Flags member is a bit field that is used for several different purposes, as defined below:

GET_IP_ADDRESS Flags Member Bit Fields

Mathematic Normal

Bit Value Value Meaning

Bit0 |1 (0x01) 1 0 = Use the provided static IP address
1 = Use DHCP to obtain an IP address

Bit1]2 (0x02) 0 Unused

Bit2 | 4 (0x04) 0 Unused

Bit3 |8 (0x08) 0 Unused

Bit4 |16 | (0x10) 0 Unused

Bit5 |32 | (0x20) 0 Unused

Bit6 | 64 (0x40) 0 Unused

Bit 7 | 128 | (0x80) 0x00 Unused

Language Reference Guide - NetLinx Programming 101

Level Keywords

Level Keywords

NetLinx supports the following LEVEL keywords:

LEVEL Keywords
~LEVSYNCON

Enables a feature that helps synchronize level values. By default, this feature is disabled for compatibility reasons.
The synchronization algorithm works by setting the level value of a level five seconds after receiving a level value from
a level. While it may not be apparent, this makes sure that level values remain in sync with each other if they ever get
out of sync.
The only way levels could ever get out of sync is when the situation of "dueling levels" arises. A typical example of
"dueling levels" is when two touch panels with active sliders are combined with a volume control. If one slider
attempts to raise the volume level while the other is attempting to lower the volume level the level value bounces back
and forth somewhere between the desired levels. If both sliders are released at the exact same time, it is possible that
one of level values displayed on the touch panel's slider is inaccurate.
The level synchronization algorithm corrects the incorrect level five seconds after activity ceases.
The commands are ~LEVSYNCON and ~LEVSYNCOFF are sent to the level that should have the synchronization
algorithm enabled or disabled. The command itself is never sent to the device because the master intercepts the
command and processes it internally.
Both commands accept a single parameter that specifies the level number. Using the "dueling levels" example above,
the following send commands will turn on the synchronization algorithm for level #1 of Touch Panel 1, level #4 of
touch panel #2, and level #2 of the volume control.

SEND_COVMAND dvTouchPanel 1, "' ~LEVSYNCON 1'

SEND_COMVAND dvTouchPanel 2, ' ~LEVSYNCON 4'

SEND_COWVMAND dvVol une, ' ~LEVSYNCON 2'
Note that for some devices, turning the level synchronization algorithm on can cause undesired results. The undesired
results will vary from device to device so it is difficult to indicate any specific failure mode. Keep in mind that the
algorithm should only be turned on when necessary. Also note that the LEVSYNCON and LEVSYNCOFF
SEND_COMMANDs may not be sent to remote devices (devices that belong to other systems) and only the device's
master may issue these commands.

~LEVSYNCOFF

Disables a feature that helps synchronize level values. By default, this feature is disabled for compatibility reasons.

COMBINE_LEVELS

See page 46.

CREATE_LEVEL

This keyword creates an association between a specified level of a device and a variable that will contain the value of
the level. This can only appear in the DEFI NE_START section of the program.
CREATE_LEVEL DEV, Level, Value
Parameters:
* DEV: The device from which to read the level.
* Level : The level of the device to read.
» Val ue: Variable in which to store the level value.
¢ DevlLev: A DEVLEV structure.
* Val ue: Variable in which to store the level value CREATE_LEVEL DevlLev, Val ue.
During execution of the program, NetLinx continuously updates the variable to match the level it represents.

DEFINE_CONNECT_ See page 46.
LEVEL
SEND_LEVEL This keyword sends a value to a specific level on a NetLinx device/port. The syntax follows any one of the four

following examples:
SEND _LEVEL DEV, Level, Value
SEND LEVEL DEV[], Level, Value
SEND LEVEL DEVLEV, Val ue
SEND_LEVEL DEVLEV[], Value
Parameters:
« DEV: Device containing the specified level.
* Level : Number of the level to receive the new value.
* Val ue: New level value.
« DEV[]:Device array (each device contains the specified level).
« DEVLEV: Device-level to receive the new value.
* DL[]:Device-level array (each will receive the new value).

SET_VIRTUAL_LEVEL_
COUNT

See page 122.

Language Reference Guide - NetLinx Programming 102

Listview Keywords

Listview Keywords

The NetLinx programming language supports the following Listview keywords. These keywords support the Listview and Dynamic
Data functionality in Modero G5 touch panels and TPDesign5:

Listview Keywords

LISTVIEW_ON_ROW_SELECT_EVENT

LISTVIEW_ON_ROW_SELECT_EVENT is a Custom Event that is raised in response to a user selection
of an item in a Listview button. When the user selects an item on the Listview button, a
LISTVIEW_ON_ROW_SELECT_EVENT is raised and the entire data feed record for that selection is
sent to the masterThe user can then use DATA_GET_EVENT_RECORD to retrieve the specific values
of interest.

NOTE: "payloadId" specifies the data access identifier to be retrieved from the custom
event object, and is predefined as "custom.value1". “payloadType” specifies the dataType
to be retrieved from the custom event object and is predefined as “custom.value2”.

The following code example illustrates how the LISTVIEW_ON_ROW_SELECT_EVENT Custom Event is
used to retrieve two data fields ('name' and 'number') when a listview item is selected.
/1 The customevent that is raised whenever a listviewitemis
/'l selected on the panel
CUSTOM _EVENT[dvTP, bt nLi st vi ew, LI STVI EW ON_ROW SELECT_EVENT]
{
SLONG payl oadl d
SLONG payl oadType
/1 just a char array to hold the data we want to use in the
/] custom event.
CHAR fiel ds[2][16]
//char variables to hold our data for "name" & "nunber"
CHAR nane[DATA_MAX_VALUE_LENGTH]|
CHAR nunber [DATA_MAX_VALUE_LENGTH]
/'l variable record, of type DATA RECORD, to hold the record
/1 we retrieve fromthe custom event
DATA_RECORD r ecord
/'l Get the data access ID fromthe custom event
/'l variable is payloadl D - customvaluel is predefined
payl oadld = custom val uel
/1 CGet the data type fromthe custom event
/'l variable is payl oadType - customvalue2 is predefined
payl oadType = custom val ue2
if (payloadld > 0 & payl oadType == DATA_ STRUCTURE_DATARECORD)
{
/1 Specify which fields we want to retrieve fromthe payl oad
/1 (these are the IDs we defined earlier)
fields[1] = 'nane'
fields[2] = 'nunber’
/1 Retrieve the record and get our requested fields
if (DATA_GET_EVENT_RECORD(dvTP, payloadld, fields, record) > 0)
{
/1 The record existed and contai ned our fields
/1 let's retrieve the values that we are interested in
nane = record.content[1].val ue
nunber = record.content[2].val ue
/1 Send the nane & nunber that was retrieved to the
/| appropriate buttons & show the popup
SEND_COWAND dvTP, "' ATXT-50, 0, ", nane"
SEND_COWAND dvTP, "' ATXT-51,0,", nunber"
SEND_COWAND dvTP, "' "PPN-Cal | i ng" "
}

}

DATA_FEED

The DATA_FEED structure contains information describing a Listview Dynamic Data feed.
DATA_FEED structure fields:

* NAME - A string identifying the data feed name

» DESCRIPTION - A string containing a short description of the data feed

* SOURCE - A string describing the source of the data feed

* LASTUPDATE - A LONG value to indicate the time of the last update

NOTE: See the "Listview Buttons & Dynamic Data" section of the TPD5 Instruction Manual
for a detailed description of format and usage of the DATA_FEED structure.

Language Reference Guide - NetLinx Programming

103

Listview Keywords

Listview Keywords (Cont.)

DATA_FIELD

The DATA_FIELD structure contains information describing an individual data field within a
DATA_RECORD metadata or content.
DATA_FIELD structure fields:
» ID - A string containing a unique identifier for the field
* TYPE - A string containing the field type. Valid data field types are:
DATA_TYPE_UNKNOWN
DATA_TYPE_STRI NG
DATA TYPE_DATETI ME
DATA_TYPE_DATE
DATA TYPE_TI ME
DATA_TYPE_I MAGE
* FORMAT - A string containing the field format. Valid data field formats are:
DATA_FORMAT_URL
DATA_FORMAT PHONE
DATA_FORMAT_EMAI L
DATA_FORMAT_| SO8601
* LABEL - A string containing the field label
* VALUE - A string containing the field value

NOTE: See the "Listview Buttons & Dynamic Data" section of the TPD5 Instruction Manual
for a detailed description of format and usage of the DATA_FEED structure.

DATA_RECORD

The DATA_RECORD structure contains information describing a data record within a data feed.
DATA_RECORD structure fields:

* METADATA - DATA_FIELD array containing a list of metadata values associated with the record
* CONTENT - DATA_FIELD array containing a list of data fields for the record

NOTE: See the "Listview Buttons & Dynamic Data" section of the TPD5 Instruction Manual
for a detailed description of format and usage of the DATA_FEED structure.

WC_DATA_FEED

The WC_DATA_FEED structure contains information describing a WIDECHAR Listview Dynamic Data
feed.

WC_DATA_FEED structure fields:

* NAME - A string identifying the data feed name

* DESCRIPTION - A WIDECHAR string containing a short description of the data feed

* SOURCE - A WIDECHAR string describing the source of the data feed

* LASTUPDATE - A LONG value to indicate the time of the last update

NOTE: See the "Listview Buttons & Dynamic Data" section of the TPD5 Instruction Manual
for a detailed description of format and usage of the DATA_FEED structure.

WC_DATA_FIELD

The WC_DATA_FIELD structure contains information describing an individual data field within a
WC_DATA_RECORD metadata or content.
WC_DATA_FIELD structure fields:
+ ID - A WIDECHAR string containing a unique identifier for the field
* TYPE - A string containing the field type. Valid data field types are:
DATA TYPE_UNKNOWN
DATA_TYPE_STRI NG
DATA TYPE_DATETI ME
DATA_TYPE_DATE
DATA_TYPE_TI ME
DATA TYPE_| MAGE
* FORMAT - A string containing the field format. Valid data field formats are:
DATA_FORMAT_URL
DATA_FORMAT_PHONE
DATA_FORMAT_EMAI L
DATA_FORMAT_| SO8601
* LABEL - A WIDECHAR string containing the field label
* VALUE - A WIDECHAR string containing the field value

NOTE: See the "Listview Buttons & Dynamic Data" section of the TPD5 Instruction Manual
for a detailed description of format and usage of the DATA_FEED structure.

WC_DATA_RECORD

The WC_DATA_RECORD structure contains information describing a WIDECHAR data record within a
WIDECHAR data feed. WC_DATA_RECORD structure fields:

* METADATA - WC_DATA_FIELD array containing a list of metadata values associated with the record
* CONTENT - WC_DATA_FIELD array containing a list of data fields for the record

NOTE: See the "Listview Buttons & Dynamic Data" section of the TPD5 Instruction Manual
for a detailed description of format and usage of the WC_DATA_RECORD structure.

Language Reference Guide - NetLinx Programming

104

Listview Keywords

Listview Keywords (Cont.)

DATA_CREATE_FEED

The DATA_CREATE_FEED function creates a NetLinx data feed with the supplied values.
Syntax:
SI NTEGER DATA_CREATE_FEED (DATA_FEED FEED)
Parameters:
* FEED: A DATA_FEED structure populated with the desired data feed identification values
Result:
1 = Data feed created
-1 = Data feed create failed due to invalid parameter

Example:

STACK_VAR DATA_FEED dat af eed

A e TP
/1 CREATE A NEW DATA FEED

A e L E LR E T T
dat af eed. name = ' phonel i st'

dat af eed. descri pti on = ' Enpl oyees'

dat af eed. source = 'netlinx Listview Exanpl e code’

DATA_CREATE_FEED dat af eed)

NOTE: See the "Listview Buttons & Dynamic Data" section of the TPD5 Instruction Manual
for a detailed description of format and usage of the WC_DATA_RECORD structure.

DATA_DELETE_FEED

The DATA_DELETE_FEED function deletes the NetLinx data feed with the specified name.
Syntax:
SI NTEGER DATA_CREATE_FEED (CHAR FEED[])
Parameters:
» FEED: A string containing the name of the data feed to delete
Result:
1 = Data feed deleted
-1 = Data feed create failed due to invalid parameter
Example:
DATA DELETE_FEED(' phonel i st')

NOTE: See the "Listview Buttons & Dynamic Data" section of the TPD5 Instruction Manual
for a detailed description of format and usage of the WC_DATA_RECORD structure.

DATA_PUBLISH_FEED

The DATA_PUBLISH_FEED function publishes the specified data feed to a file and returns a string
containing the URL reference to the file.
Syntax:
CHAR[] DATA_PUBLI SH FEED (CHAR FEED[])
Parameters:
» FEED: A string containing the name of the data feed to publish
Result:
A string containing the URL of the published data feed file OR a textual error message indicating a
publish failure
Example:
DEFI NE_VARI ABLE
STACKVAR CHAR publ i shedURL[DATA MAX_VALUE_LENGTH|
publ i shedURL = DATA_PUBLI SH FEED(' phonelist")

NOTE: See the "Listview Buttons & Dynamic Data" section of the TPD5 Instruction Manual
for a detailed description of format and usage of the WC_DATA_RECORD structure.

DATA_GET_PUBLISHED_FEED

The DATA_GET_PUBLISHED_FEED function returns the URL of an already published feed matching
the specified data feed name.
Syntax:
CHAR[] DATA_GET_PUBLI SHED FEED (CHAR FEED[])
Parameters:
» FEED: A string containing the name of the published data feed
Result:
A string containing the URL of the published data feed file OR a textual error message indicating
an error
Example:
DEFI NE_VARI ABLE
STACKVAR CHAR publ i shedURL[DATA_MAX_VALUE_LENGTH]
publ i shedURL = DATA_GET_PUBLI SHED FEED(' phonelist')

NOTE: See the "Listview Buttons & Dynamic Data" section of the TPD5 Instruction Manual
for a detailed description of format and usage of the WC_DATA_RECORD structure.

Language Reference Guide - NetLinx Programming

105

Listview Keywords

Listview Keywords (Cont.)

DATA_ADD_RECORD The DATA_ADD_RECORD function adds a new record to a data feed.
Syntax:
SI NTEGER DATA_ADD RECORD (CHAR FEED[], CHAR [] RECORDSET_| D, DATA_RECORD
REC)
Parameters:

» FEED: A string containing the name of the data feed to add the record to
* RECORDSET_ID: A string containing the name of the record set the record belongs to
* REC: A DATA_RECORD containing the record values to add to the data feed
Result:
1 = Record added
-1 = Record failed to add due to invalid parameter
Example:
STACK_VAR DATA_RECORD record

/| Records can have netadata fields and content fields. In this
/1 exanple we won't use any netadata
SET_LENGTH_ARRAY(record. net adata, 0)

/1 W will have 3 content fields per record: photo, name and phone nunber
SET_LENGTH_ARRAY(record. content, 3)

/1 Initialize the field attributes that will be the same for every record
/1 the first field in a record will be the inmage

record.content[1].id = 'photo';

record.content[1].type = DATA TYPE_I MAGE;

record.content[1].format = DATA FORVAT_URL;

/1 The | abel can be something different fromthe id but in our case we'll
/| keep themthe same
record.content[1] .l abel = 'photo';

/'l The second field in a record will be the name
record.content[2].id = 'nane';
record.content[2].type = DATA TYPE_STRI NG
record.content[2].format = "";
record.content[2].label = 'nane';

/1 The third field will be the phone nunber
record.content[3].id = 'nunber’;
record.content[3].type = DATA TYPE_STRI NG
record.content[3].fornmat = DATA FORVAT_PHONE;
record. content[3].label = 'nunber’;

/1 The next step is to put in the actual values for the 3 fields

I/l Do this for the first record

record.content[1].value = "http://192. 168.222.333/ftp/listview hunter.jpg'
record.content[2].value = 'Hunter Pence'

record. content[3].value = '888-555-1111"

/1 Add the record to the feed phonelist data feed
DATA_ADD_RECORD(' phonelist', 'phonelist', record)

NOTE: See the "Listview Buttons & Dynamic Data" section of the TPD5 Instruction Manual
for a detailed description of format and usage of the WC_DATA_RECORD structure.

DATA_GET_EVENT_RECORD The DATA_GET_EVENT_RECORD function retrieves data feed event record values from a data feed
custom event.
Syntax:

SI NTEGER DATA_GET_EVENT_RECORD (DEV device, LONG payl oadl D, char
fields[][], DATA_RECORD rec)

Parameters:
» device: NetLinx device event is coming from
* payloadID: Payload identifier supplied in custom event value1
» fields: array of strings specifying what fields from the record to return
* rec: DATA_RECORD structure containing the desired field values from the data feed event
Result:

1 = Record values retrieved
-1 = Failed to retrieve values due to invalid parameter

Example:

CUSTOM _EVENT[dvTP, bt nLi st vi ew, LI STVI EW ON_ROW SELECT_EVENT]

{

SLONG payl oadl D

SLONG payl oadType

CHAR fiel ds[2][16]

CHAR nane[DATA_MAX_VALUE_LENGTH

CHAR number [DATA_ MAX_VALUE_LENGTH]|

DATA_RECORD record

/] Get the data access ID fromthe custom event

payl oadl D = custom val uel

Language Reference Guide - NetLinx Programming 106

Listview Keywords

Listview Keywords (Cont.)

DATA_GET_EVENT_RECORD
(Cont.)

/'l Get the data type fromthe custom event
payl oadType = custom val ue2
Li stview Buttons & Dynamic Data
108 TPDesign5 - G5 Touch Panel Design/Programmi ng
if (payloadl D > 0 & payl oadType == DATA_STRUCTURE_DATARECORD)
{
/'l Specify which fields we want to retrieve fromthe payl oad
fields[1] = 'nane'
fields[2] = 'nunber’

/| Populate a record with the requested fields fromthe event
i f (DATA_GET_EVENT_RECORD(dvTP, payloadlD, fields, record) > 0)
{
/1 Al is well so far so retrieve the values that we are
/1 interested in fromthe selection that the user nade on
/1 the panel.
name = record.content[1].val ue
nunber = record.content[2].val ue
// Put the name and nunber that was sel ected on a popup and
/1 show t he popup
SEND_COWMAND dvTP, "' ATXT-50, 0, ', nane"
SEND_COWAND dvTP, "' ATXT-51, 0, ", nunber"
SEND_COWMMAND dvTP, "' APPN-Cal |i ng' "
}
}
}

NOTE: See the "Listview Buttons & Dynamic Data" section of the TPD5 Instruction Manual
for a detailed description of format and usage of the WC_DATA_RECORD structure.

_WC_DATA_CREATE_FEED

The _WC_DATA_CREATE_FEED function creates a WIDECHAR NetLinx data feed with the supplied
values.

Syntax:
SI NTEGER _WC _DATA CREATE_FEED (WC_DATA_FEED FEED)
Parameters:
* FEED: A WC_DATA_FEED structure populated with the desired data feed identification values
Result:

1 = Data feed created
-1 = Data feed create failed due to invalid parameter

NOTE: See the "Listview Buttons & Dynamic Data" section of the TPD5 Instruction Manual
for a detailed description of format and usage of the WC_DATA_RECORD structure.

_WC_DATA_ADD_RECORD

The _WC_DATA_ADD_RECORD function adds a new record to a WIDECHAR data feed.
Syntax:
SI NTEGER _WC DATA_ADD RECORD (CHAR FEED[], W DECHAR [] RECORDSET_I D,
WC_DATA_RECORD REC)
Parameters:
* FEED: A string containing the name of the data feed to add the record to
* RECORDSET_ID: A WIDECHAR string containing the name of the record set the record belongs to
* REC: A WC_DATA_RECORD containing the record values to add to the data feed
Result:
1 = Record added
-1 = Record failed to add due to invalid parameter

NOTE: See the "Listview Buttons & Dynamic Data" section of the TPD5 Instruction Manual
for a detailed description of format and usage of the WC_DATA_RECORD structure.

_WC_DATA_GET_EVENT_RECORD

The _WC_DATA_GET_EVENT_RECORD function retrieves WIDECHAR data feed event record values
from a data feed custom event.
Syntax:
SI NTEGER _WC _DATA_GET_EVENT_RECORD (DEV devi ce, LONG payl oadl D, W DECHAR
fields[][], WC_DATA RECORD rec)
Parameters:
» device: NetLinx device event is coming from
* payloadID: Payload identifier supplied in custom event value1
« fields: array of WIDECHAR strings specifying what fields from the record to return
* rec: WC_DATA_RECORD structure containing the desired field values from the data feed event
Result:
1 = Record values retrieved
-1 = Failed to retrieve values due to invalid parameter

NOTE: See the "Listview Buttons & Dynamic Data" section of the TPD5 Instruction Manual
for a detailed description of format and usage of the WC_DATA_RECORD structure.

Language Reference Guide - NetLinx Programming

107

Log Keywords

Log Keywords

The NetLinx programming language supports the following Log keywords:

Log Keywords
SET_LOG_LEVEL

Sets the current log level for the program. All subsequent logs at the specified level or lower will cause a log message out
the NetLinx master’s logging facilities.

NOTE: The final terminal output is further filtered based on the terminal session "msg on" level. See the MSG
ON|OFF Terminal Command (in the NX Controllers WebConsole and Programming Guide) for more information.

Syntax:
SET_LOG_LEVEL(CONSTANT | NTEGER LEVEL)
The four valid log levels are:
* INTEGER AMX_ERROR =1
¢« INTEGER AMX_WARNING = 2
* INTEGER AMX_INFO = 3
« INTEGER AMX_DEBUG =4

GET_LOG_LEVEL

Retrieves the current log level for the program.
I NTEGER GET_LOG LEVEL()
Where the returned value will be one of the for log levels:
¢ INTEGER AMX_ERROR =1
¢ INTEGER AMX_WARNING = 2
¢ INTEGER AMX_INFO =3
« INTEGER AMX_DEBUG =4

AMX_LOG

Sends the specified message to the NetLinx master’s logging facilities if the current log level setting is at least as large as
LEVEL. For example, if the current log level setting is AMX_WARNING, calling log with level of AMX_ERROR will cause a log,
while AMX_INFO would not.

NOTE: This command is supported by NetLinx Controller firmware version 4 or higher.

NOTE: The final terminal output is further filtered based on the terminal session "msg on" level. See the MSG
ON|OFF Terminal Command (in the NX Controllers WebConsole and Programming Guide) for more information.

The AMX_LOG function is meant to replace the “SEND_STRING 0,..." log method.
AMX_LOG(CONSTANT | NTEGER LEVEL, CHAR MSd])

Where level is one of the following values:

* INTEGER AMX_ERROR =1

* INTEGER AMX_WARNING = 2

* INTEGER AMX_INFO =3

* INTEGER AMX_DEBUG =4

Example:
AVMX_LOG(AMX_ERROR, "' FAI LURE OCCURRED, VALUE=', | TOA(ERR VAL)")

Language Reference Guide - NetLinx Programming 108

Math Functions

Math Functions

Math functions are supported by NetLinx Controller firmware version 4 or higher. The NetLinx programming language supports the
following Math Function keywords:

Math Function Keywords

EXP_VALUE

Returns the base-e exponential function of x, which is the e number raised to the power of x.
EXP_VALUE(CONSTANT VARI ANT X)
Where X can be any intrinsic type. (I NTEGER, FLOAT, DOUBLE, etc)

LOG_VALUE

Returns the natural logarithm of x. The natural logarithm is the base-e logarithm, the inverse of the natural exponential
function (EXP_VALUE).

LOG_VALUE(CONSTANT VARI ANT X)
Where X can be any intrinsic type (I NTEGER, FLOAT, DOUBLE, etc) with a value greater than 0.

LOG10_VALUE

Returns the common (base-10) logarithm of x.
LOGLO_VALUE(CONSTANT VARI ANT X)
Where X can be any intrinsic type (I NTEGER, FLOAT, DOUBLE, etc) with a value greater than 0.

POWER_VALUE

Returns BASE raised to the power EXPONENT.

PONER_VALUE(CONSTANT VARI ANT BASE, CONSTANT VARI ANT EXPONENT)
Where BASE and EXPONENT can be any intrinsic type (I NTEGER, FLOAT, DOUBLE, etc).
The following combinations are error conditions which will return 0:

* "BASE = 0 and EXPONENT=negative
* "BASE=negative and EXPONENT=non-integral value

SQRT_VALUE

Returns the square root of x.
SQRT_VALUE(CONSTANT VARI ANT X)
Where X can be any intrinsic type (I NTEGER, FLOAT, DOUBLE, etc) with a value greater than 0.

Language Reference Guide - NetLinx Programming

109

Module Keywords

Module Keywords

NetLinx Modules

The ability to reuse code is a desirable goal in software development; however, code reuse takes careful planning and organization.
As discussed earlier, NetLinx provides tools such as functions and modules to promote reusability. Modules are NetLinx sub-
programs designed to be "plugged into" a main program.

Defining a Module
The MODULE_NAME entry on the first line of the file defines the module. The syntax is:

MODULE_NAME = ' <npdul e name>' [(<paraneter |ist>)]
The MODULE_NAME entry identifies the file as containing a NetLinx module, as opposed to a standard NetLinx source code file. The
module name is any valid string literal not to exceed 64 characters. A file can contain only one module and the file name must be
the same as the module name with the addition of the ".AXS" extension. Module parameters behave exactly like subroutine
parameters; the parameter list is optional. The value for each parameter is set either by the main program or another module. If the
value of a parameter is changed, both the main program and module see the change.

NOTE: Constants and expressions cannot be used as arguments in the parameter list.

The example below defines a module named ModuleExample. Aside from the MODULE_NAME entry, the code looks like any standard
NetLinx source code file. All parameters to a module must be one of the intrinsic types: CHAR, INTEGER, SINTEGER, LONG, SLONG,
FLOAT, DOUBLE, DEV, DEVCHAN or DEVLEV. Also, any of the above array types can be used.

MODULE_NAME=' Mbdul eExanpl e' (DEV dvDECK, DEVCHAN dcTRANPORTS[], | NTEGER nFI RST)

(*{{ PS_SOURCE_| NFO{ PROGRAM STATS) *)
(*‘k*‘k*‘k*‘k*‘k***)
(* ORPHAN_FI LE_PLATFORM 1 *)
(*‘k*‘k*‘k*‘k*‘k***)
(*}} PS_SOURCE_| NFO *)
(*‘k*‘k*‘k*‘k*‘k***)
(* DEVI CE NUMBER DEFI NI TI ONS GO BELOW *)

(***)

DEFI NE_DEVI CE

(***)

(* CONSTANT DEFI NI TI ONS GO BELOW *)

(***)

DEFI NE_CONSTANT

NO BUTTON = 0
NO_FUNCTI ON = 256

PLAY =1
SToP =2
PAUSE = 3
FFWD =4
REW =5
SFWD =6
SREV =7
REC =8
PLAY FB = 241
STOP FB = 242
PAUSE_ FB = 243
FFWD FB = 244
REW FB = 245
SFWD FB = 246
SREV_FB = 247
REC FB = 248

(* ver will go into stop after rewinding for a certain time *)
VCR1_REW TO STOP = 1800 (* 3 nin *)

(* ver will go into stop after search rewinding for a certain tine *)
VCR1_SREV_TO STOP = 12000 (* 20 min *)

(* ver will go into stop after being paused for a certain time *)
VCR1_PAUSE_TO_STOP = 6000 (* 10 nmin *)

(* button feedback flag *)
VCR1_DEFEAT_FEEDBACK = 0

Language Reference Guide - NetLinx Programming 110

Module Keywords

(***)

(* TYPE DEFI NI TI ONS GO BELOW *)

(***

DEFI NE_TYPE*)
(*‘k*‘k*‘k*‘k*‘k***)

(* VARI ABLE DEFI NI TI ONS GO BELOW *)

(***)

DEFI NE_VARI ABLE

VOLATI LE | NTEGER nOFFSET_FN (* FUNCTI ON OFFSET *)
VOLATI LE | NTEGER nOFFSET_FB (* FEEDBACK OFFSET *)
VOLATI LE | NTEGER nFUNC (* FUNCTI ON THAT WAS PRESSED *)

(***)

(* SUBROUTI NE DEFI NI TI ONS GO BELOW *)

(***)

DEFI NE_CALL ' ALL OFF

{

OFF [dvDECK, nOFFSET_FN+PLAY]

OFF [dvDECK, nOFFSET_FN+STOP]

OFF [dvDECK, nOFFSET_FN+PAUSE]

OFF [dvDECK, nOFFSET_FN+FFVD]

OFF [dvDECK, nOFFSET_FN+REW

OFF [dvDECK, nOFFSET_FN+SFVD]

OFF [dvDECK, nOFFSET_FN+SREV]

OFF [dvDECK, nOFFSET_FN+REC]

}
DEFI NE_CALL ' FEEDBACK' (| NTEGER nFUNCTI ON)
{

[dvDECK, nOFFSET_FB+PLAY_FB] = (nFUNCTI ON=PLAY)

[dvDECK, NOFFSET_FB+STOP_FB] = (nFUNCTI ON=STOP)

[dvDECK, nOFFSET_FB+PAUSE_FB] = (nFUNCTI ON=PAUSE)

[dvDECK, NOFFSET_FB+FFWD_FB] = (nFUNCTI ON=FFVD)

[dvDECK, NOFFSET_FB+REW FB] = (nFUNCTI ON=REW

[dvDECK, NOFFSET_FB+SFWD_FB] = (nFUNCTI ON=SFWD)

[dvDECK, nOFFSET_FB+SREV_FB] = (nFUNCTI ON=SREV)

[dvDECK, nOFFSET_FB+REC FB] = (nFUNCTI ON=REC)
1***‘k*‘k*‘k*‘k***)
(* STARTUP CODE GOES BELOW *)
(*‘k*‘k*‘k*‘k*‘k***)
DEFI NE_START

(* SELECT OFFSETS I|F ANY *)
I F (nFIRST BAND $00FF)

NOFFSET_FN=(nFI RST BAND $00FF) - PLAY
ELSE

NOFFSET_FN=0

I F (nFI RST BAND $FF00)

NOFFSET_FB=((nFl RST BAND $FF00) / $FF) - PLAY_FB
ELSE

NOFFSET_FB=0

(***)

(* EVENT PROCESSI NG ROUTI NES BELOW *)

(***)

DEFI NE_EVENT

(***)

(* dcTRANPORTS - TRANSPORT CONTROLS *)

(***)

BUTTON_EVENT[dc TRANPORTS]

{
PUSH:

#| F_DEFI NED SYSCALL_NOTI FY

SEND_STRI NG 0, "' I N MODULE ', 39, ' Mbdul eExanpl e’ , 39"
#END_| F

Language Reference Guide - NetLinx Programming 111

(* RUN A FUNCTI ON *)
NFUNC = GET_LAST(dc TRANPORTS)
SW TCH (nFUNC)

CASE PLAY:

I F (![dvDECK, nOFFSET_FB+REC_FB])

{
CANCEL_WAI'T ' VCRL REW TO STOP
CANCEL_WAI'T ' VCRL PAUSE TO STOP
CANCEL_WAIT ' VCRL SREV TO STOP'
CALL 'ALL CFF
M N_TO [dvDECK, nOFFSET_FN+PLAY]
CALL ' FEEDBACK' (PLAY)

CASE STOP:

{
CANCEL_WAI'T ' VCRL REW TO STOP
CANCEL_WAI'T ' VCRL PAUSE TO STOP
CANCEL_WAI'T ' VCRL SREV TO STOP
CALL 'ALL CFF
M N_TO [dvDECK, nOFFSET_FN+STOP]
CALL ' FEEDBACK (STOP)

}

CASE PAUSE:
SELECT

ACTI VE ([dvDECK, NOFFSET_FB+PAUSE_FB]
AND [dvDECK, nOFFSET_FB+REC_FB]
AND dc TRANPORTS] 8] . CHANNEL<NO_FUNCTI ON) :

CANCEL_WAI'T ' VCRL REW TO STOP
CANCEL_WAI'T ' VCR1 PAUSE TO STOP
CANCEL_WAI'T ' VCRL SREV TO STOP'
CALL 'ALL CFF
M N_TO [dvDECK, nOFFSET_FN+REC]
CALL ' FEEDBACK (REC)

}

ACTI VE ([dvDECK, nOFFSET_FB+PAUSE_FB]

AND dcTRANPORTS][1] . CHANNEL<NO_FUNCTI ON) :

CANCEL_WAI T ' VCRL REW TO STOP'
CANCEL_WAI T ' VCRL PAUSE TO STOP'
CANCEL_WAI T ' VCRL SREV TO STOP'
CALL 'ALL OFF

M N_TO [dvDECK, nOFFSET_FN+PLAY]
CALL ' FEEDBACK' (PLAY)

}
ACTI VE ([dvDECK, nOFFSET_FB+PLAY_FB]) :
{
CANCEL_WAI T ' VCRL REW TO STOP'
CANCEL_WAI T ' VCRL PAUSE TO STOP'
CANCEL_WAI T ' VCRL SREV TO STOP'
WAI T VCRL_PAUSE_TO STOP ' VCRL PAUSE TO STOP'
SYSTEM CALL ' FUNCTI ON' (dvDECK, STOP, nFI RST)
CALL 'ALL CFF
M N_TO [dvDECK, nOFFSET_FN+PAUSE]
CALL ' FEEDBACK' (PAUSE)
}
ACTI VE ([dvDECK, nOFFSET_FB+REC FB]) :
{
CANCEL_WAI T ' VCRL REW TO STOP'
CANCEL_WAI T ' VCRL PAUSE TO STOP'
CANCEL_WAI T ' VCRL SREV TO STOP'
WAI T VCRL_PAUSE_TO STOP ' VCRL PAUSE TO STOP'
SYSTEM CALL ' FUNCTI ON (dvDECK, STOP, nFl RST)
CALL 'ALL OFF
M N_TO [dvDECK, nOFFSET_FN+PAUSE]
CALL ' FEEDBACK' (PAUSE)
ON [dvDECK, nOFFSET_FB+REC_FB]

Language Reference Guide - NetLinx Programming

Module Keywords

112

CASE FFWD:
SELECT

ACTI VE ([dvDECK, nOFFSET_FB+STOP_FB]
OR [dvDECK, NOFFSET_FB+FFVWD_FB]
OR [dvDECK, nOFFSET_FB+REW FB]
OR (dcTRANPORTS[6] . CHANNEL
AND ([dvDECK, nOFFSET_FB+PLAY_FB]
OR [dvDECK, NOFFSET_FB+SREV_FB]

OR [dvDECK, nNOFFSET_FB+SFWD_FB]))):

CANCEL_WAI'T ' VCRL REW TO STOP
CANCEL_WAI'T ' VCR1L PAUSE TO STOP
CANCEL_WAI'T ' VCRL SREV TO STOP'
CALL 'ALL CFF

M N_TO [dvDECK, nOFFSET_FN+FFVD]
CALL ' FEEDBACK (FFVD)

}

ACTI VE (dcTRANPORTS][6] . CHANNEL=NO_BUTTON

AND ([dvDECK, nOFFSET_FB+PLAY_FB]
OR [dvDECK, NOFFSET_FB+SREV_FB]
OR [dvDECK, nNOFFSET_FB+SFWD_FB]

CANCEL_WAI T ' VCRL REW TO STOP'
CANCEL_WAI T ' VCRL PAUSE TO STOP'
CANCEL_WAI T ' VCRL SREV TO STOP'
CALL 'ALL OFF

M N_TO [dvDECK, nOFFSET_FN+SFWD]
CALL ' FEEDBACK' (SFWD)

}
}

CASE SFWD:
{
I F ([dvDECK, nNOFFSET_FB+PLAY_FB]

OR [dvDECK, nOFFSET_FB+STOP_FB]
OR [dvDECK, NOFFSET_FB+REW FB]
OR [dvDECK, nOFFSET_FB+FFWD_FB]
OR [dvDECK, nOFFSET_FB+SREV_FB]
OR [dvDECK, nOFFSET_FB+SFWD_FB])

CANCEL_WAI'T ' VCRL REW TO STOP
CANCEL_WAI'T ' VCRL PAUSE TO STOP
CANCEL_WAI'T ' VCRL SREV TO STOP'
CALL 'ALL CFF
M N_TO [dvDECK, nOFFSET_FN+SFWD]
CALL ' FEEDBACK' (SFVD)
}
}

CASE REW

{
SELECT

{
ACTI VE ([dvDECK, NOFFSET_FB+STOP_FB]
OR [dvDECK, nOFFSET_FB+FFWD_FB]
OR [dvDECK, nOFFSET_FB+REW FB]
OR (dcTRANPORTS[7] . CHANNEL
AND ([dvDECK, nOFFSET_FB+PLAY_FB]
OR [dvDECK, nOFFSET_FB+SREV_FB]

OR [dvDECK, NOFFSET_FB+SFWD_FB]))) :

CANCEL_WAI T ' VCR1 REW TO STOP'
CANCEL_WAI'T ' VCR1 PAUSE TO STOP
CANCEL_WAI' T ' VCR1 SREV TO STOP

WAI T VCRL_REW TO STOP ' VCRL REW TO STOP
SYSTEM CALL ' FUNCTI ON (dvDECK, STOP, nFI RST)

CALL 'ALL OFF
M N_TO [dvDECK, nOFFSET_FN+REW
CALL ' FEEDBACK' (REW

Language Reference Guide - NetLinx Programming

)):

Module Keywords

113

}
ACTI VE (dcTRANPORTS] 7] . CHANNEL=NO_BUTTON
AND ([dvDECK, NOFFSET_FB+PLAY_FB]
OR [dvDECK, NOFFSET_FB+SREV_FB]
OR [dvDECK, NOFFSET_FB+SFWD_FB])):
CANCEL_WAI T ' VCRL REW TO STOP'
CANCEL_WAI T ' VCRL PAUSE TO STOP'
CANCEL_WAI T ' VCRL SREV TO STOP'
WAI T VCRL_SREV_TO STOP ' VCRL SREV TO STOP'
SYSTEM CALL ' FUNCTI ON' (dvDECK, STOP, nFl RST)
CALL 'ALL OFF
M N_TO [dvDECK, nOFFSET_FN+SREV]
CALL ' FEEDBACK (SREV)

}
}

CASE SREV:

I F ([dvDECK, nOFFSET_FB+PLAY_FB]
OR [dvDECK, nOFFSET_FB+STOP_FB]
OR [dvDECK, nOFFSET_FB+REW FB]
OR [dvDECK, nOFFSET_FB+FFVD_FB]
OR [dvDECK, nOFFSET_FB+SREV_FB]
OR [dvDECK, nNOFFSET_FB+SFWD_FB])

CANCEL_WAI T ' VCRL REW TO STOP'
CANCEL_WAI T ' VCRL PAUSE TO STOP'
CANCEL_WAI T ' VCRL SREV TO STOP'
WAI T VCRI_SREV_TO STOP ' VCRL SREV TO STOP'

SYSTEM CALL ' FUNCTI ON' (dvDECK, STCP, nFl RST)
CALL 'ALL OFF
M N_TO [dvDECK, nOFFSET_FN+SREV]
CALL ' FEEDBACK' (SREV)
}
}

{

CASE REC:

I F ([dvDECK, nOFFSET_FB+STOP_FB]
OR [dvDECK, nOFFSET_FB+REC_FB])

{
CANCEL_WAI'T ' VCRL REW TO STOP
CANCEL_WAI'T ' VCRL PAUSE TO STOP
CANCEL_WAIT ' VCRL SREV TO STOP'
CALL 'ALL CFF
M N_TO [dvDECK, nOFFSET_FN+REC]
CALL ' FEEDBACK (REC)

(***)

(* THE ACTUAL PROGRAM GOES BELOW *)

(***)

DEFI NE_PROGRAM

[dcTRANPORTS[1]] = [dvDECK, nOFFSET_FB+PLAY_FB]
[dcTRANPORTS[2]] = [dvDECK, nOFFSET_FB+STOP_FB]
[dcTRANPORTS[3]] = [dvDECK, nOFFSET_FB+PAUSE_FB]

[dcTRANPORTS[4]] = ([dvDECK, nOFFSET_FB+FFWD_FB] OR (dcTRANPORTS] 6] . CHANNEL=NO BUTTON AND

[dvDECK, nOFFSET_FB+SFWD_FB]))

[dcTRANPORTS[5]] = ([dvDECK, nOFFSET_FB+REW FB] OR (dcTRANPORTS[7] . CHANNEL=NO BUTTON AND
[dvDECK, nOFFSET_FB+SREV_FB]))

[dcTRANPORTS[6]] = [dvDECK, NOFFSET_FB+SFWD_FB]

[dcTRANPORTS[7]] = [dvDECK, nOFFSET_FB+SREV_FB]

[dcTRANPORTS[8]] = ([dvDECK, nOFFSET_FB+REC FB] AND (! [dvDECK, NOFFSET_FB+PAUSE_FB]))

(************'k*'k*'k**)

(* END OF PROGRAM *)

(* DO NOT PUT ANY CODE BELOW THI S COMVENT *)

(***)

Language Reference Guide - NetLinx Programming

Module Keywords

Module Keywords

Using a Module in a Program

To use a module in a program, you must declare it using the DEFINE_MODULE keyword. This tells the NetLinx compiler to add the
module to the program, effectively merging the module's event handling and mainline code with the containing program (or
module). In other words, the program will have one event table and one mainline routine consisting of code from the main program
and all modules declared using the DEFINE_MODULE statement.

Technically, modules can contain declarations to other modules, provided that no circular references are involved. However,
because different instances of the same module must not be separated by instances of a different module, it is highly recommended
that you do not declare modules from within other modules - if you have multiple declarations of the parent module they will then be
separated by the declarations of the child module.

FIG. 3 demonstrates how a NetLinx module is incorporated into a main program. In this example, the main program has no event
table or mainline code.

DEFINE_PROGRAM (Mainline) EVENT TABLE
Main program module
Main program module
Module 1
Module 1
Module 2
Module 2
Module n
Module n
End of Mainline
FIG. 3 Mainline and Event Table Organization
PROGRAM_NAME=' Modul eExanpl eTest
(*{{PS_SOURCE_I NFO{ PROGRAM STATS) *)

(***)

(* ORPHAN FI LE_PLATFORM 1 *)
(***)
(*}} PS_SOURCE_I NFO *)

(***)

(* DEVI CE NUMBER DEFI NI TI ONS GO BELOW *)

(***)

DEFI NE_DEVI CE
dvVCR =1.7:0
dvTP = 128:1:0

(***)

(* VARI ABLE DEFI NI TI ONS GO BELOW *)

(***)

DEFI NE_VARI ABLE

VOLATI LE

DEVCHAN dcTRANPORTS[] = {
{ dvTP, 1}, { dvTP, 2 }, { dvTP,3 }, { dvTP. 4 },
{ dvTP,5}, { dvTP, 6}, { dvTP, 7 }, { dvTP, 8 }
}

VOLATI LE

I NTEGER nVCR_FI RST = 0

(***)

(* MODULE CODE GOES BELOW *)

(***)

DEFI NE_MODULE ' Mbdul eExanpl €' mdl VCR(dvVCR, dc TRANPORTS, nVCR_FI RST)

(***)

(* END OF PROGRAM *)
(* DO NOT PUT ANY CODE BELOW THI'S COVVENT *)

(***)

Language Reference Guide - NetLinx Programming 115

Module Keywords

Module Keywords

NetLinx supports the following Module keywords:

Module Keywords

DEFINE_MODULE This keyword declares a module that will be used by either the main program or another module. It is the counterpart
to the MODULE_NAME entry that appears as part of the implementation of the module.
DEFI NE_MODULE ' <npdul e nanme>' | nstanceNanme(<paraneter |ist>)
Parameters:
* <module name>: The name of the module as specified in the MODULE_NAME statement in the module
implementation file.
« InstanceName: The name to assign to the instance of the module.
* <parameter list>: The list of parameters available to the module.

DUET_MEM_SIZE_GET Display the amount of memory allocated for Duet Java pool.
This is the current Java memory heap size as measured in Megabytes.
An example is a value of 5 = 5 MB.

DUET_MEM_SIZE_SET Set the amount of memory allocated for Duet Java pool. This is the current Java memory heap size as measured in
Megabytes. This feature is used so that if a NetLinx program requires a certain size of memory be allotted for its
currently used Duet Modules, it can be reserved on the target Master.

Valid values are:

2 - 8 for 32MB systems

2 - 36 for 64MB systems

This setting does not take effect until the next reboot.

NOTE: "DUET_MEM_SIZE_SET(int)" should call REBOOT() following a set.

MODULE_NAME This keyword introduces the definition of a module. It must appear on the first line of the module implementation file.
MODULE_NAME = ' <npdul e name>' (<paraneter |ist>)
See DEFI NE_MODULE, on page 116, for more information.

Language Reference Guide - NetLinx Programming 116

Operator Keywords

Operator Keywords

Overview

An Operator is a character or group of characters that performs a specific mathematical or relational function. Each operator type
is described below.

Arithmetic Operators

Arithmetic operators create a numeric value from one or more operations such as addition, multiplication, and division.

Arithmetic Operators

Operator | Function
+ Addition
- Subtraction

* Multiplication
/ Division
% Modulo (remainder after division)

Relational Operators
A relational operator is a conditional statement; it tells NetLinx whether to execute a particular function(s) in the program.

Relational Operators

Operator | Function
< Less Than
> Greater Than
= Equal To
== Equal To
<= Less Than or Equal To
>= Greater Than or Equal To
<> Not Equal To

Logical Operators
Logical operators compare two conditions or, in the case of NOT, invert one condition. A true or false result is produced.

Logical Operators

Operator | Function Keyword
&& Logical And | AND (see page 118)
| Logical Or OR (see page 118)
AN Logical Xor XOR (see page 118)
! Logical Not NOT (see page 118)

Bitwise Operators
Bitwise operators are keywords or symbols that perform a bit-by-bit operation between two items.

Bitwise Operators

Operator | Function Keyword
& Bitwise And | BAND (see page 118)
| Bitwise Or BOR (see page 118)
n Bitwise Xor BXOR (see page 118)
~ Bitwise Not BNOT (see page 118)
<< Shift Left LSHIFT (see page 118)
>> Shift Right RSHIFT (see page 118)

Assignment Operators
The assignment operators may appear only once in a single NetLinx statement.

Assignment Operators

Operator | Function
= Assignment

++ Increment by 1

-- Decrement by 1

The following rules apply to the use of assignment operators:
e The "=" operator may be used to assign:
e Expressions to intrinsic type variables (see the Data Type Keywords section on page 55)
e Arrays to other arrays of matching size and type
e Structures to other structures of the same type

Language Reference Guide - NetLinx Programming 117

Operator Keywords

e The "++" and "--" operators are statements and cannot appear within expressions. For example:

FOR (1=1;

1 <10; | ++) /1 Legal
= j 4+ /1 111 egal

NOTE: Refer to the Structure Keywords section on page 128 for information on structures.

Operator Precedence
The table below shows the inherent precedence assigned to the operators.

Operator Precedence

Level

Operators Associativity

1

Left To Right

Left To Right

Left To Right

Left To Right

Left To Right

Left To Right

Nl o ol A w N

&& | AN Left To Right

NOTE: As noted in the chart, the NOT(!) operator has the highest precedence in NetLinx systems but the lowest precedence in Axcess
systems. Axcess programs that are converted to NetLinx may exhibit logic problems if they use statements that combine NOT(!) and
other operators. Contact AMX Technical Support for help resolving these issues.

Operator Keywords

NetLinx supports the following Operators:

Operator Keywords

AND (&&)

This logical operator evaluates two logical conditions. Both conditions must be true for the entire expression to be true.

BAND (&)

This operator performs a bitwise AND on two data items, which can be constants or variables.

BNOT (~)

This operator performs a bitwise NOT on a constant or variable.

BOR (])

This operator performs a bitwise OR on two data items, which can be constants or variables.

BXOR (*)

This operator performs a bitwise XOR operation between two data items, which can be constants or variables.

LSHIFT

This keyword causes the bits in the associated integer field to be shifted left. This has the effect of multiplying by 2n, where n is the
number of bit positions to shift. The symbol << is equivalent to LSHIFT.
For example:
INT2 = INT1 LSH FT 2
is equivalent to:
INT2 = INT1 << 2
Both statements shift INT1 left two positions. Either statement could be replaced with the following:
INT2 = INT1 * 4

MOD (%)

This keyword is used to generate the remainder of a division function. You cannot take the mod of an integer without first loading the
value into a variable.

For example:

VRAM LSB = ((2 % 16) +$30)
However,

ID=2

OTHER = 16

VRAM LSB = ((I D % OTHER) + $30) (* works *)

(* does not work *)

NOT (1)

This keyword is used to negate a given expression.
IF (NOT (X > 10))
{

/1 statenents to execute if X <= 10

}

OR(ID)

This keyword evaluates two conditions. If one or both conditions are true, the entire expression evaluates to true.

RSHIFT

This keyword causes the bits in the associated value field to be shifted right. This has the effect of dividing by 2n where n is the
number of bit positions to shift. The symbol >> is equivalent to RSHIFT.

For example:
INT2 = INT1 RSHI FT 2
is equivalent to:
INT2 = INT1 >> 2
Both statements shift | NT1 right two positions.
Either statement could be replaced with:
INT2 = INT1 / 4

XOR (AA)

This keyword evaluates two conditions. One and only one condition can be true for the entire expression to be true.

Language Reference Guide - NetLinx Programming

118

Port Keywords

Port Keywords

The NetLinx programming language supports the following Port keywords:

Port Keywords

DYNAMIC_POLLED_PORT Designates a NetLinx serial port that should be polled for dynamic device detection.
This API must be called for each serial port that can dynamically have a device plugged into it.
DYNAM C_POLLED _PORT (DEV net | i nxDevi ce)

FIRST_LOCAL_PORT This keyword contains the lowest number that may be assigned as a local port number.

STATIC_PORT_BINDING Designates an application device along with its SDK class and the physical interface it is bound to.

Language Reference Guide - NetLinx Programming 119

Push and Release Keywords

Push and Release Keywords

NetLinx supports the following PUSH and RELEASE keywords:

PUSH and RELEASE Keywords

DO_PUSH

This keyword causes an input change from OFF to ON to occur on a specified device-channel without the device-
channel being activated by external means. To prevent the program from stalling mainline too long, there is a 0.5
second timeout on DO_PUSH.

DO_PUSH defaults to a 0.5 second push on a channel before issuing a DO_RELEASE for you (unless another DO_PUSH is
executed for the same channel). NetLinx will forcibly exit the DO_PUSH after 0.5 seconds, regardless of the operation it
is executing. If the channel is already ON, no event is generated.

NOTE: The timeout feature is used to prevent un-released pushes and out of control ramping.
DO_PUSH(DEVI CE, CHANNEL)

DO_PUSH_TIMED

Similar to DO_PUSH, except DO_PUSH_TIMED lets you specify the timeout, so you can control the length of time that will
pass before the automatic DO_RELEASE is generated.
DO _PUSH _TI MED(DEV Devi ce, | NTEGER Channel, LONG Ti neout)
Parameters:
« Device: The device to PUSH.
* Channel: The channel to PUSH.
« Timeout: The time (in 1/10ths of seconds) the PUSH remains active. If zero is specified as the timeout then the
timeout is 0.5 seconds. If DO_PUSH_TIMED_INFINITE is specified as the timeout then the push never times out.
DO PUSH TI MED (dvTouchPanel, 5, 10) // push button 5 for 1.0S

DO_RELEASE This keyword causes an input change from ON to OFF to occur on a specified device and channel without the channel

being deactivated by external means. If the channel is already OFF, no event is generated.
DO_RELEASE(DEVI CE, CHANNEL)

MIN_TO This keyword operates just like the TO keyword, except that the specified channel or variable stays on for a minimum
length of time, even if the corresponding channel is released. The minimum length of time is set by SET_PULSE_TIME.
MIN_TO follows the same conditions of operation as the TO keyword.
See SET_PULSE_TI ME, on page 122, for more information.

PUSH This keyword declares a block of code to be executed when a push event is received for the associated device and

channel. An example PUSH statement is shown below:
PUSH [DEVI CE, CHANNEL] PUSH [DEVCHAN[]]
{/l statenents}
This keyword also defines a section in the BUTTON_EVENT handler for processing PUSH events.

PUSH_CHANNEL

This keyword contains the channel number that was just turned on due to an input change. The value remains valid for
one pass through mainline. The inactive state of this variable is all fields equal to zero.

PUSH_DEVCHAN

This keyword contains the device-channel (a DEVCHAN structure) that was just turned on due to an input change.
Individual fields of this DEVCHAN structure can be accessed using dot-operator syntax, as shown below:
PUSH_DEVCHAN. Devi ce
PUSH_DEVCHAN. Devi ce. Nunmber
PUSH_DEVCHAN. Devi ce. Port
PUSH_DEVCHAN. Devi ce. Syst em
PUSH_DEVCHAN. Channel
* These fields remain valid for one pass through mainline.
* The inactive state of this variable is all fields equal to zero.

PUSH_DEVICE

This keyword contains the number of the device that was just turned on due to an input change. The value remains valid
for one pass through mainline. The inactive state of this variable is all fields equal to zero.

RELEASE

This keyword declares a block of code to be executed when a release event is received for the associated device and
channel.

RELEASE [DEVI CE, CHANNEL]

RELEASE [DEVCHAN 1]

/1l statenments

}
This keyword also defines a section in a BUTTON_EVENT handler for processing RELEASE events.

RELEASE_CHANNEL

This keyword contains the number of the channel that was just turned off due to an input change.
* The value remains valid for one pass through mainline.
* The inactive state of this variable is all fields equal to zero.

RELEASE_DEVCHAN

This keyword contains the device-channel (a DEVCHAN structure) that was just turned off due to an input change.
Individual fields of this DEVCHAN structure can be accessed using dot-operator syntax, as shown below:
RELEASE_DEVCHAN. Devi ce
RELEASE_DEVCHAN. Devi ce. Number
RELEASE_DEVCHAN. Devi ce. Port
RELEASE_DEVCHAN. Devi ce. Syst em
RELEASE_DEVCHAN. Channel
* These fields remain valid for one pass through mainline.
* The inactive state of this variable is all fields equal to zero.

RELEASE_DEVICE

This system variable contains the number of the device associated with the channel that was just turned off due to an
input change.

* The value remains valid for one pass through mainline.

* The inactive state of this variable is all fields equal to zero.

Language Reference Guide - NetLinx Programming 120

Push and Release Keywords

PUSH and RELEASE Keywords (Cont.)

TO This keyword activates a channel or variable for as long as the corresponding channel of its PUSH statement is
activated. When the channel referenced by the PUSH statement changes from off to on, the TO command starts
activating the associated channel or variable. When the channel is released, the TO command stops activating of the
channel or variable. Therefore, a TO statement must be found underneath a PUSH statement only.
The syntax is shown below:

TO [DEVI CE, CHANNEL] TO [(DEVCHAN]])] TO [Vari abl e]
Several conditions apply to the use of the TOcommand:
¢ It must be used only below a PUSH statement.
« It cannot be used as part of a set of WAl T statements.
» It cannot be placed in the DEFI NE_START section.

The channel or variable will act under the rules set by DEFINE_LATCHING, DEFINE_MUTUALLY_EXCLUSIVE, and
DEFINE_TOGGLING.

Language Reference Guide - NetLinx Programming 121

SET Keywords

NetLinx supports the following

SET Keywords

SET keywords:

SET Keywords

SET_DNS_LIST

See page 100.

SET_IP_ADDRESS

See page 100.

SET_LENGTH_ARRAY

See page 32.

SET_LENGTH_STRING

See page 127.

SET_OUTDOOR_
TEMPERATURE

This function establishes the value for the outdoor temperature.
* This value is broadcast to all devices periodically.
* Avalue of 32768 indicates that no outdoor temperature is available.
SET_OUTDOOR_TEMPERATURE(| NTEGER Tenp)
Parameters:
* Temp: The outdoor temperature as it shall be displayed. It is up to the programmer to provide the correct
temperature scale whether it is Celsius or Fahrenheit.
SET_OUTDOOR_TEMPERATURE (32) // show 32 degrees

SET_PULSE_TIME

This function sets the PULSE time in 1/10th second units. The default PULSE time is 5 (0.5 seconds).
SET_PULSE_TI ME (Tl ME)

PULSE

This keyword turns a channel or variable on for the length of time set by the function SET_PULSE_TI ME.
Once the pulse time elapses, the channel or variable is turned off.

PULSE [DEVI CE, CHANNEL]

PULSE [DEVCHAN 1]

PULSE [Vari abl e]

SET_SYSTEM_NUMBER

Sets the system number of the NetLinx master. The new system number will take effect after the system has been
rebooted.
SLONG SET_SYSTEM NUMVBER (| NTEGER newSyst enNum)
Parameters:
* newSyst enNum Desired new system number
Result:
* 0: Operation was successful.
e -1: System number is invalid.
» -2: Assignment of system number causes conflict.
This function only affects the master's system number, not the system number of any attached devices.
Therefore, any devices with pre-programmed system numbers will no longer communicate with this master.
SET_SYSTEM NUMBER (3) // set new system nunber

SET_TIMER

This keyword resets the system timer. The system timer counts up in 1/10th second units. The value passed to
this function (TIME) may be any unsigned 32-bit variable or constant. This provides a timer with a maximum
range of over 13 years.

SET_TI MER (TI ME)

NOTE: The system timer is reset to zero on power up.

SET_VIRTUAL_CHANNEL_
COUNT

This function lets the programmer override the default number of channels that a virtual device port maintains.
By default every virtual device port maintains the state of channels 1-255 inclusive.
SET_VI RTUAL_CHANNEL_COUNT(DEV Devi ce, | NTEGER Count)
Parameters:
» Device: The virtual device port to modify.
+ Count: The number of channels that the specified virtual device port should maintain.
SET_VI RTUAL_CHANNEL_COUNT (dvVirtual, 1024) // 1024 channel s

SET_VIRTUAL_LEVEL_COUNT

This function lets the programmer override the default number of levels that a virtual device port maintains. By
default, every virtual device port maintains the state of levels 1-8 inclusive.
SET_VI RTUAL_LEVEL_COUNT (DEV Devi ce, | NTEGER Count)
Parameters:
» Device: The virtual device port to modify.
» Count: The number of levels that the specified virtual device port should maintain.
SET_VI RTUAL_LEVEL_COUNT (dvVirtual,10) // nake it have 10 |evels

SET_VIRTUAL_PORT_COUNT

This function lets the programmer override the default number of ports that a virtual device maintains. By default
every virtual device maintains the state of a single port (port 1).
SET_VI RTUAL_PORT_COUNT(DEV Devi ce, | NTEGER Count)
Parameters:
» Device: The virtual device to modify.
* Count: The number of ports that the specified virtual device should maintain.
SET_VI RTUAL_PORT_COUNT (dvVirtual,2) // 2 ports

Language Reference Guide - NetLinx Programming

122

SMTP Keywords

Overview

SMTP Keywords

SMTP functionality is supported by NetLinx Controller firmware version 4 or higher. NetLinx supports the following SMTP keywords:

SMTP Keywords
SMTP_SERVER_CONFIG_SET

Set a configuration value for the current SMTP server.

* SMTP Server configuration will be retained between boots of the master.

» Once the server configuration values have been set, email can be sent using the SMTP_SEND() API.

Syntax:

SMIP_SERVER_CONFI G_SET(CONSTANT CHAR CONFI G_NAME, CONSTANT CHAR CONFI G_VALUE)

Where CONFI G_NAME is one of the following:

* SMTP_ADDRESS - Used to set the address of the SMTP server (e.g. 'mail.acme.com’')

* SMTP_PORT_NUMBER - Used to set the IP port number to connect to on the SMTP server (e.g. '25').
NOTE: Supplying a port number of 0 means “use the best default port” which would imply use 25 which is the
SMTP well-known port.

* SMTP_USERNAME - Used to set the username for server authentication. If username length is set to 0,

authentication is not attempted when connecting to the server.

* SMTP_PASSWORD - Used to set the password for server authentication. If password length is set to O,

authentication is still attempted but a zero-length password (NULL_STR) is sent.

* SMTP_FROM - Used to set the 'Mail-From:' field in outgoing emails.

* SMTP_REQUIRE_TLS - Used to set whether TLS authentication security should be required when connecting to

the server. Valid values are SMTP_TLS_TRUE and SMTP_TLS_FALSE.

Example:

SMIP_SERVER_CONFI G_SET(SMIP_ADDRESS, ' nmil . acne. con)
SMTP_SERVER_CONFI G_SET(SMIP_PORT_NUMBER, ' 25")

SMTP_SERVER _CONFI G_SET(SMIP_USERNAME, ' j ohn. doe@cne. coni)
SMIP_SERVER_CONFI G_SET(SMIP_PASSWORD, ' nypassword')
SMIP_SERVER_CONFI G_SET(SMIP_FROM ' j ohn. doe@cne. con)
SMTP_SERVER _CONFI G_SET(SMIP_REQUI RE_TLS, SMIP_TLS_TRUE)

SMTP_SERVER_CONFIG_GET

Get a configuration value for the current SMTP server.
Syntax:
CHAR[] SMTP_SERVER CONFI G_GET(CONSTANT CHAR CONFI G_NAME)
Where CONFIG_NAME is one of the following:
* SMTP_ADDRESS - Used to get the address of the SMTP server (e.g. 'mail.acme.com').
* SMTP_PORT_NUMBER - Used to get the IP port number to connect to on the SMTP server (e.g. '25').
NOTE: Supplying a port number of 0 means "use the best default port" which would imply the use of port 25
which is the SMTP well-known port.
* SMTP_FROM - Used to set the 'Mail-From:' field in outgoing emails.
* SMTP_REQUIRE_TLS - Used to set whether TLS authentication security should be required when connecting to
the server. Valid return values are SMTP_TLS_TRUE and SMTP_TLS_FALSE
NOTE: Query of SMTP_USERNAME and SMTP_PASSWORD is disabled for security reasons.
Example:
CURRENT_ADDRESS = SMTP_SERVER CONFI G_GET(SMrP_ADDRESS)
CURRENT_PORT = SMIP_SERVER CONFI G_GET(SMIP_PORT_NUMBER)
CURRENT_FROM = SMIP_SERVER _CONFI G_GET(SMIP_FROV)
CURRENT_TLS = SMTP_SERVER CONFI G GET(SMIP_REQUI RE_TLS)

SMTP_SEND

Sends an email to a single destination. It returns an identifier associated with the email event. The email is sent
asynchronously by the on-board SMTP client. If the mail transmission fails, an ONERROR DATA event will be sent to
the supplied status DPS with DATA.NUMBER set to the error code and DATA.TEXT set to the string representation of
the email identifier.
Syntax:
SI NTEGER SMIP_SEND(DEV DPS, CONSTANT CHAR TO ADDRESS[], CONSTANT CHAR SUBJECT[],
CONSTANT CHAR BODY[], CONSTANT CHAR TEXT_ATTACHVMENT]]
Where:
* DPSis a DEV to receive asynchronous send status
* TO_ADDRESS is a string containing the email address of the destination. String must be less than 127
characters.
* SUBJECT is a string containing the email subject line
* BODY is a string containing the email body text
* TEXT_ATTACHMENT is a string containing the filename of a text file to be attached to the email. Filename must
be less than 256 characters and file size must be under 65536 bytes. Can be specified as NULL_STR when no
attachment is desired.
Example:
MAIL_I DX1 = SMIP_SEND (0:3:0, 'john.doe@cne.com ,'Mil Subject','This is the nail
text','attachment.txt')
MAIL_I DX2 = SMIP_SEND(0: 3: 0, ' j ane. doe@cne. com ,' Mai |l Alert',
‘This is an email alert!', NULL_STR)
DEFI NE_EVENT
DATA_EVENT [0: 3: 0]

{
ONERROR

SEND_STRING 0, "' Emai | send failed: idx=", DATA TEXT, " error=", | TOA(DATA. NUMBER) "

Language Reference Guide - NetLinx Programming 123

String Keywords

String Keywords

Overview

A string is an array of characters of known length. This length may be less than the dimensioned length. For example:

DEFI NE_VARI ABLE
CHAR MyString[32]
I NTEGER StrlLen

DEFI NE_START

M/String = ' STOP

StrLen = LENGTH_STRI NG MyStri ng)
In the example above, StrLen holds the value 4, the length of MyString. The length of MyString can range from 0 to 32. If an attempt
is made to assign a string longer than the capacity of the destination string, the copied string is truncated to fit. The string length
is implicitly set when a string literal, string expression, or variable is assigned to the string. The function SET_LENGTH_STRING can
be used to explicitly set the length of a string to any arbitrary length between 0 and the dimension of the character array. For
example:

SET_LENGTH_STRI NG(MyStri ng, 3)
causes the contents of MyString to read 'STO', even though the character 'P' still resides in MYSTRING[4].

String Expressions
A string expression is a string enclosed in double quotes containing a series of constants and/or variables evaluated at run-time to
form a string result. String expressions can contain up to 16000 characters consisting of string literals, variables, arrays, and ASCII
values between 0 and 255. For example:

CHAR St r Expl[6]

StrExp = "STOP, 25, 'OFF, X'
In the example above, the string expression contains the constant STOP, the value 25, the string literal 'OFF', and the variable X.
Assuming STOP is 2 and X = 5, the string expression will evaluate to "2, 25, 'OFF', 5".

Wide Strings

The wide string (wide character string data type) is provided for dealing with Unicode fonts, which use 16-bit character codes, used
for many Far-Eastern fonts (instead of the standard 8-bit codes used with most Western fonts). Here's a syntax sample for a wide
character string:

W DECHAR WChar [40]

The statement above declares a wide character string containing 40 elements, for a total of 80 bytes. A wide character string can
be used in the same manner as other character strings. It maintains a length field that can be retrieved using LENGTH_STRING and
set using SET_LENGTH_STRING. For example:

W DECHAR St r Exp] 6]
| NTEGER StrLen

StrExp = {STOP, 500, 'OFF, X}

StrlLen LENGTH_STRI NG&(St r Exp)
In the example above, if STOP is 2 and X is a wide character whose value is 1000, the string expression will evaluate to "2, 500, 79,
70,70, 1000" and StrLen is 6. Each array element can now assume a value of up to 65,535, rather than the limit of 255 imposed by
the standard character string. A CHAR string may be assigned or compared to a wide character string. For example:

WChar = ' FFWD'

- or -
IF (Wchar = 'REV')

(* statements *)
}
Each 8-bit character in the CHAR string is converted to 16-bit before the assignment or comparison operation is performed.

Language Reference Guide - NetLinx Programming 124

String Keywords

STRING Keywords

NetLinx supports the following STRING keywords:

STRING Keywords

CHARD Sets the delay between all transmitted characters to that specified in 100-microsecond increments.
The syntax:
CHARD-<time in 100 mi crosecond increnents>
Example:

SEND_COWWAND devi ce, ' CHARD- 100’
Sets a 10mS delay between all transmitted characters.

CHARDM Sets the delay between all transmitted characters to that specified in 1-millisecond increments.
The syntax:
CHARDM <tinme in 1 mllisecond increnments>
Example:

SEND_COMVAND devi ce, ' CHARDM 100’
Sets a 10 mS delay between all transmitted characters.

COMPARE_STRING This keyword compares two character strings. If either string contains a '?' character, the matching character in the
other string is not compared. The '?' is equivalent to a wildcard.

Example:

DEFI NE_LI BRARY_FUNCTI ON LONG COVPARE_STRI NG(CHAR A[], CHAR B[])
Here is some useful debugging code:

tstStr = ' ALEXERI CRYAN

ul Error = COVMPARE_STRING (tstStr, 'ALEX)

if(ulBrror ==

SEND_STRI NG dvDebug, ' ALEXERI CRYAN ! = ALEX

el se

SEND_STRI NG dvDebug, 'ALEXERI CRYAN == ALEX... BAD!'

tstStr = ' ALEXERI CRYAN
ul Error = COMPARE_STRING (tstStr, 'ALEXERI CRYAN)
if (ulBError ==0)
SEND_STRI NG dvDebug, 'ALEXERI CRYAN ! = ALEXERI CRYAN. .. BAD!'
el se
SEND_STRI NG dvDebug, ' ALEXERI CRYAN == ALEXERI CRYAN

tstStr = ' ALEXERI CRYAN
ul Error = COWARE_STRING (tstStr, 'ALEX????RYAN)
if (ulError ==
SEND_STRI NG dvDebug, ' ALEXERI CRYAN != ALEX????RYAN...BAD '
el se
SEND_STRI NG dvDebug, ' ALEXERI CRYAN == ALEX????RYAN
Another example of a use for this feature is if you want an event to occur every hour. You would enter a time string
that would contain a '??;00 ;00' (hours/minute/sec) for the recurring event that in this case would occur every hour.
Result: The returned result can only be True (1) or False (0).
* 0 = the strings don't match
* 1 = the strings are the same

FIND_STRING This function searches through a string for a specified sequence of characters.
| NTEGER FI ND_STRI NG (CHAR STRING], CHAR Seq[], I|NTEGER Start)!|NTEGER FI ND_STRI NG
(W DECHAR STRING], WDECHAR Seq[], I|NTEGER Start)
Parameters:
* STRING: The string of character to search.
* Seq: The sequence of characters to search for.
» Start: The starting character position for the search.
Result:
A 16-bit unsigned integer representing the character location of Seq in STRI NG If the character string is found at
the beginning of the string, this function returns 1; any error condition returns 0.
POS = FIND_STRING STRING 'ABC, 1)

LEFT_STRING This function returns the specified number of characters from the beginning of a string.
CHAR[] LEFT_STRING (CHAR STRING], LONG Count)
W DECHAR[| LEFT_STRING (W DECHAR STRING], LONG Count)
Parameters:
* STRING: The string from which to extract the characters.
* Count: The number of character to copy from the beginning of the string.
The result is a string containing a copy of the first Count characters from STRING.
STRI NG = ' ABCDEFG Substr = LEFT_STRI NG STRI NG 3)
/1 Substr ="'ABC

Language Reference Guide - NetLinx Programming 125

String Keywords

STRING Keywords (Cont.)

LENGTH_STRING

This function returns the length of a CHAR or W DECHAR string. This function is retained for compatibility with
previous versions of Axcess and provides the same information as LENGTH_ARRAY.
LONG LENGTH_STRI NG (CHAR STRING])
LONG LENGTH_STRI NG (W DECHAR STRING 1)
Parameters:
* STRING: The input character string.
The result is the length of STRING. The string length can be set implicitly through a literal or variable string
assignment or explicitly by calling SET_LENGTH_STRING.
For example:
| F (LENGTH_STRI NG(STRING > 0)

/'l process string

}

LOWER_STRING

This function changes all alphabetic characters in the specified string to lower case.
CHAR[] LOWER STRING (CHAR STRING 1)
W DECHAR[| LOWER_STRING (W DECHAR STRING 1)

Parameters:

* STRING: The character string to convert to lower case.

The result is the converted character string.
LCString = LOAER_STRI NG STRI NG

MAX_LENGTH_STRING

This function returns the dimensioned length of a CHAR or WIDECHAR string. This function is retained for
compatibility with previous versions of Axcess. It provides the same information as MAX_LENGTH_ARRAY (see
page 32).

LONG MAX_LENGTH_STRI NG (CHAR STRING])

LONG MAX_LENGTH_STRI NG (W DECHAR STRING 1)
Parameters:
* STRING: The input character string.
Result: The dimensioned length of STRI NG

MaxLen = MAX_LENGTH_STRI NG STRI NG)

Len = LENGTH_STRI NG STRI NG

| F (MaxLen > Len)

/| append character to STRI NG

MID_STRING

This function returns the specified number of characters, starting at the specified location in the source string.
CHAR[] M D_STRING (CHAR STRING LONG Start, LONG Count)
W DECHAR]] M D_STRING (W DECHAR STRING LONG Start, LONG Count)
Parameters:
* STRING: The input character string.
» Start: Starting location in the string.
* Count: Number of characters to extract.
The result is a character string containing the specified characters.
STRI NG = ' ABCDEFGH JK'
Substr = M D_STRING STRING 5, 4)
(* Substr = 'EFCGH *)

REDIRECT_STRING

This keyword is used to pass all strings from device 1 to device 2 and all strings from device 2 to device 1. This is
called a redirection and you can assign up to eight at one time.

REDI RECT_STRI NG (Number, DEV1, DEV2)
The parameter Number identifies the particular redirection (1-8). To cancel a redirection, pass zero for Device1 and
Device2.

NOTE: Redirections are lost if system power is turned off.

REMOVE_STRING

This function removes characters from the specified string. All characters up to and including the first occurrence of
the specified sequence are removed.
CHAR[] REMOVE_STRING (CHAR STRING, CHAR Seq[], LONG Start)
W DECHAR]] REMOVE_STRI NG (W DECHAR STRI NG, W DECHAR Seq[], LONG Start)
Parameters:
* STRING: String from which to find and remove characters.
* Seq: Sequence of characters to find.
» Start: Starting position in the string to begin search.
The result is a string containing the removed characters. If the character sequence was not found, an empty string is
returned.

STRI NG = ' ABCDEF'
Substr = REMOVE_STRI NG(STRING ' BC, 1)
(* Substr = 'ABC *)
(* STRING = ' DEF' *)

Language Reference Guide - NetLinx Programming 126

String Keywords

STRING Keywords (Cont.)

RIGHT_STRING

Returns the specified number of characters from the end of a string.
CHAR[] RIGHT_STRING (CHAR STRING], LONG Count)
W DECHAR]] RIGHT_STRING (W DECHAR STRINF], LONG Count)
Parameters:
* STRING: The string from which to extract the characters.
* Count: The number of character to copy from the end of the string.
The return is a string containing a copy of the last Count characters from STRING.
STRI NG = ' ABCDEFG
Substr = RIGHT_STRING(STRING, 3) // Substr = 'EFG

SEND_STRING

This keyword sends a string to a NetLinx device/port.
The syntax is:
SEND_STRI NG DEV, '<string>'
-or-
SEND_STRING DEV[], '<string>'
When sending to an IP socket, you may receive the following error (via ONERROR event):
17 Local Port Not Open
This error means you are trying to send a string to a local port on which IP_CLIENT_OPEN (page 98) or
IP_SERVER_OPEN (page 99) has not been called.

SET_LENGTH_STRING

This function sets the length of a CHAR or WIDECHAR string. This function is retained for compatibility with previous
versions of Axcess. It provides the same functionality as SET_LENGTH_ARRAY (page 32).
SET_LENGTH_STRI NG (CHAR STRINF], LONG Len)
SET_LENGTH_STRI NG (W DECHAR STRING], LONG Len)
Parameters:
* STRING: The input character string.
* Len: The new string length.
SET_LENGTH_STRI NG(STRI NG, 10)

STRING

This keyword defines a section in a DATA event handler for processing SEND_STRI NGinstructions.

STRING_TO_VARIABLE

See page 70.

UPPER_STRING

This function changes all alphabetic characters in the specified string to upper case.
The syntax:
CHAR[] UPPER _STRING (CHAR STRING]) WDECHAR]
UPPER_STRI NG (W DECHAR STRING])
Parameters:
* STRING: The character string to convert to upper case.
Result: The converted character string.
UCString = UPPER_STRI NG STRI NG

VARIABLE_TO_STRING

See page 53.

Language Reference Guide - NetLinx Programming 127

Structure Keywords

Structure Keywords

Overview

Structures group different data types together as one data unit. Structures also group arrays of structures together so that each
element of the array contains all of the elements of the structure.

NOTE: Arrays are limited by their inability to have multiple data-types within one array. NetLinx supports Structures to remove this
limitation. Refer to the Array Keywords on page 30 for information on Arrays.

Structures are defined within the DEFINE_TYPE section. The DEFINE_TYPE section appears between the DEFINE_CONSTANT
section and the DEFINE_VARIABLE section.

NOTE: Since structures cannot be used within the DEFINE_CONSTANT section but must be declared before they are used within the
DEFINE_VARIABLE section, placing DEFINE_TYPE between DEFINE_CONSTANT and DEFINE_VARIABLE is the logical location.

The standard format for structures is:

STRUCTURE <nane>

{
[<type>] <datal>
[<type>] <data2>

}

Example:

DEFI NE_TYPE
STRUCTURE NEWSTRUCT

I NTEGER Nunber

CHAR Text [20]
}
In the example above, a structure named NEWSTRUCT is declared to contain two data types, a 16-bit number and a 20-character
array. Once declared, a structure may be used in the same way as any other data type. Here is a syntax sample:

DEFI NE_VARI ABLE

NEWSTRUCT MyNewsSt r uct

NEWSTRUCT MyNewsSt ruct Array|[3]
Structures can be initialized using set notation as in the two examples below. Notice that the members of each structure, as well as
the entire array, are enclosed in braces:

MyNewSt ruct . Nunber = 0
MyNewsSt ruct . Text = ' Copyri ght by Conpany X

MyNewSt ruct Array[1] . Nunber = 1
MyNewsSt ruct Array[1] . Text = 'Line 1'
My/NewsSt ruct Array[2] . Nunber = 2
MyNewsSt ruct Array[2] . Text = "Line 2'
MyNewsSt ruct Array[3] . Nunber = 3
MyNewSt ruct Array[3] . Text = 'Line 3

Structure members are referenced using dot-operator syntax as shown below:

MyNewSt ruct . Nunber = 0

MyNewSt ruct Array[1] . Nunber = 20

SET_LENGTH_STRI NG (M/NewSt r uct . Text, 16)

Example - Using Structures to Define a Database Table
A database table is an array of structures; the database table is an array of records - each record is a structure. Each record
contains data of different types.

Consider the elements of a database table. We then show how to define the structure and create a variable that uses the data
structure in an array. We show how to access the individual elements of the structure.

Enpl oyee Nunber (* INDEX - Integer Value *)

Enpl oyee National |nsurance Nunber (* National Insurance Number - Long *)

Enpl oyee First Nane (* First Name - Character Array *)

Enpl oyee Last Nane (* Last Nanme - Character Array *)

Contribution to Pension (* Contribution in %- Float *)

Using the standard format shown above, the 'employee' structure is defined in the DEFI NE_TYPE section:
DEFI NE_TYPE

STRUCTURE EMP

{

I NTEGER EMP_NUM
CHAR NI _NUM 9]
CHAR F_NAME[16]
CHAR L_NAME[16]
FLOAT CONT_PENSI ON

Language Reference Guide - NetLinx Programming 128

Structure Keywords

Within the DEFINE_VARIABLE section, an instance of the structure and an array of the structure is defined as follows:

DEFI NE_VARI ABLE
EMP JOHN_DOE
EMP AMX_EMP[1000]

Within the program, information is assigned to the structure, using the information stored within the structure:
JOHN_DCE. EMP_NUM = 101

JOHN_DCE. Nl _NUM = ' 155426367’
JOHN_DOE. F_NAME = " JOHN
JOHN_DOE. L_NAME = ' DCE’

JOHN_DOE. CONT_PENSI ON = 0. 01

EMP_I NDEX = JOHNDOE. EMP_NUM (* EMP_I NDEX = 101 *)
AMK_EMP[101] = JOHNDCE (* AMX_EMP[101] = {101, '155426367', 'JOHN, 'DOE, 0.01}*)
AMX_ENMP[60] . EMP_NUM = 60

AMX_EMP[60] . F_NAME = ' BOB'

NOTE: Other uses for arrays of structures include channel listings, speed-dial lists, and user password lists.

Data Sets
NetLinx predefines several structures designed to work with NetLinx device numbers, channels, and levels. Data sets allow you to
group and combine certain elements of NetLinx devices. There are three data set structures supported by NetLinx:
e DEV (Device Sets)
e DEVCHAN (Device-Channel Sets)
e DEVLEV (Device-Level Sets)
You have already seen the structure DEV structure in the DEFINE_DEVICE section. If we were to define the structure DEV in the
DEFINE_TYPE section, it would look like this:
STRUCTURE DEV
| NTEGER DEVI CE

I NTEGER PORT
I NTEGER SYSTEM

}
The actual instancing of the structure is unique to the DEV structure because you separate the individual structure's elements with
colons (¢) instead of enclosing the structure with braces {} and separating the elements with commas (,). For example:

DEV PANEL_A = 128:1:0 (* correct *)
DEV PANEL_B = {128, 1, 0} (* wong *)

Using the DEV structure, you create the structures DEVCHAN and DEVLEV like this:
STRUCTURE DEVCHAN

{

DEV DEVI CE

I NTEGER CHANNEL
}

STRUCTURE DEVLEV
{

DEV DEVI CE

I NTEGER LEVEL
}

DEVCHAN and DEVLEV instance and initialize similarly to other NetLinx structures:

DEV PANEL_A = 192:1:0

DEV PANEL_B = 129:1:0
DEVCHAN BUTTON_A = { PANEL_A, 1
DEVCHAN BUTTON B = { 128:1:0, 2
DEVLEV LEVEL 1 = { PANEL_A, 1}
DEVLEV LEVEL_2 = { 128:1:0, 2}
DEV, DEVCHAN, and DEVLEYV are structures built into the NetLinx language. You can do more with DEV, DEVCHAN, and DEVLEV than
you could with structures you create within the code.

DEV PANEL_GROUP1[] = { 128:1:0, 129:1:0, 130:1:0 }

DEV MSP_GROUP[5] = { MBP1, MSP2, MBP3 }

DEVCHAN PRESET1_BUTTONS[5] = { {TP1, 21}, {MSP1, 1}, {134:1:0, 1} }
DEVLEV VOL1_LEVEL[] = { {TP1, 1}, {MSP1, 1}, {192:1:0, 1} }

You can use the structures and arrays of the structures within many commands and situations where you would use a device
number, a device and channel combination, or a device and level combination. These data sets allow you to combine devices,
devices and channels, and devices and levels without using the DEFINE_COMBINE or DEFINE_CONNECT_LEVEL sections. This gives
you the ability to combine certain pages of panels or to combine panels under certain conditions. In Axcess, once the panels were
combined you were locked into that system configuration. Instead of writing the following statements:

PUSH[MSP1, 1]

PUSH MSP2, 1]

PUSH[MSP3, 1]

[RELAY, 1] = ![RELAY, 1]

[MBPL, 1] = [RELAY, 1]
[MBP2, 1] = [RELAY, 1]
[MSP3, 1] = [RELAY, 1]

Language Reference Guide - NetLinx Programming 129

Structure Keywords

You can use device sets or channel sets to accomplish the same functionality:

PUSH[MSP_GROUP, 1] (* MBP_GROUP IS A DEV SET *)
[RELAY, 1] = ![RELAY, 1]

[MSP_GROUP, 1] = [RELAY, 1]
- Or -

PUSH[MSP_PRESET1] (* MBP_PRESET1 |'S A DEVCHAN SET *)
[RELAY, 1] = I[RELAY, 1]

[MSBP_PRESET1] = [RELAY, 1]

STRUCTURE Keywords

NetLinx supports the following STRUCTURE keywords:

STRUCTURE Keywords

DEFINE_TYPE See page 63.

STRUCT This is an abbreviated form of the STRUCTURE keyword, and has the same functionality.

STRUCTURE This keyword introduces the declaration of a STRUCTURE data type.
STRUCTURE <nane>
{

[<type>] <datal>

[<type>] <data2>

Language Reference Guide - NetLinx Programming 130

Terminal Keywords

Terminal Keywords

NetLinx supports the following Terminal keywords:

Terminal Keywords

SSH_CLIENT_CLOSE

This function closes an open SSH communication port with a server.
Syntax:
sl ong SSH_CLI ENT_CLOSE(| NTEGER Local Port)
Parameters:
* LocalPort - A user-defined (non-zero) integer value representing the local port on the client machine to use for this
conversation. This local port number must be passed to SSH_CLIENT_OPEN to open the conversation.
Returns:

This function always returns 0. Errors are returned via the DATA_EVENT ONERROR method. The following errors may be
returned from the call:

2 - General failure (out of memory)

4 - Unknown host

6 - Connection refused

7 - Connection timed out

8 - Unknown connection error

9 - Already closed

14 - Local port already used

16 - Too many open sockets

Example:
SSH_CLI ENT_CLOSE(5000)

SSH_CLIENT_OPEN

This function opens a port for SSH communication with a server.
Syntax:
sl ong SSH_CLI ENT_OPEN(| NTEGER Local Port, CHAR ServerAddress[], | NTEGER renotePort,
CHAR usernane[], char password[], char privateKeyPathname[], char privateKeyPassphrase[])
Parameters:
* LocalPort- A user-defined (non-zero) integer value representing the local port on the client machine to use for this
conversation. This local port number must be passed to SSH_CLIENT_CLOSE to close the conversation.
* ServerAddress - A string containing either the IP address (in dotted-quad-notation) or the domain name of the server
to which you want to connect.
* remotePort - The port number on the server that identifies the program or service that the client is requesting, typically
22
* username - Login user name
» password - Password for the user name, null if using PKI
» privateKeyPathname - Path to private key
+ privateKeyPassphrase - Password for private key.
Returns:
This function always returns 0. Errors are returned via the DATA_EVENT ONERROR method. The following errors may be
returned from the call:
2 - General failure (out of memory)
4 - Unknown host
6 - Connection refused
7 - Connection timed out
8 - Unknown connection error
9 - Already closed
14 - Local port already used
16 - Too many open sockets
Example:
SSH_CLI ENT_OPEN(5000, '192.168.0.1', 22, 'userl', 'password', '/certs/id_rsa', '")

Language Reference Guide - NetLinx Programming 131

Time and Date Keywords

Time and Date Keywords

NetLinx supports the following Time & Date keywords:

Time and Date Keywords

ASTRO_CLOCK

This routine calculates the time of sunset and sunrise at a specified location (longitude and latitude) on a specified date.
SI NTEGER ASTRO_CLOCK(DOUBLE Longi t ude, DOUBLE Lat it ude, DOUBLE
Hour sFromGMT, CHAR[] Date, CHAR[] Sunrise, CHAR[] Sunset)
Parameters:
* Longitude: Longitude in Degrees. Fraction of Degrees. West longitudes must be negative.
+ Latitude: Latitude in Degrees. Fraction of Degrees. South latitudes must be negative.
* HoursFromGMT: Number of hours from GMT. Hours West of GMT can be entered as negative (e.g., -5 for EST,
-4 for EDT).
* Date: In mm/dd/yyyy format.
* Sunrise: Value gets filled in by the function in 24-hour format.
+ Sunset: Value gets filled in by the function in mm/dd/yyyy format.
Result:
0: Success
-1: Latitude entry error
-2: Longitude entry error
-3: Hours entry error
-4: Date entry error

CLOCK

Sets the date and time on the Master. The date and time settings are propagated over the local bus.
' CLOCK <mm dd-yy> <hh: mm ss>'

Example:

SEND_COMMAND 0, "' CLOCK 04-12-05 09:45:31""

DATE

The system variable DATE returns the current date in (mm/dd/yy) string format. The wildcard character "?" is not allowed
for string comparisons because the actual date is needed.

| F (DATE = ' 12/25/00")

{

}

You can replace the wildcard feature by using the COMPARE_STRING function.

DATE_TO_DAY

This function returns an sinteger representing the day portion of a date string. The S in SINTEGER allows a negative value
to be returned.

SI NTEGER DATE_TO DAY (CHAR LDATE[])
Parameters:
+ LDATE: [Input] string containing the date in mm/dd/yyyy format.
If successful, this function returns an integer (1-31) representing the day portion of the date string. If the specified date is
invalid, this function returns -1.

SI NTEGER nDaynDay = DATE TO DAY ('2/9/1999') // nDay = 9

DATE_TO_MONTH

This function returns an sinteger representing the month portion of a date string.
SI NTEGER DATE_TO MONTH (CHAR LDATE[])
Parameters:
* LDATE: [Input] string containing the date in mm/dd/yyyy format.
If successful, this function returns an integer (1-12) representing the month portion of the date string. If the specified
date is invalid, this function returns -1.
SI NTEGER nMont hNMont h = DATE_TO MONTH (' 2/9/1999') // nMonth = 2

DATE_TO_YEAR

This function returns an sinteger representing the year portion of a date string.
SI NTEGER DATE_TO YEAR (CHAR LDATE[)
Parameters:
* LDATE: [Input] string containing the date in mm/dd/yyyy format.
If successful, this function returns a 4-digit integer representing the year portion of the date string. If the specified date is
invalid, this function returns -1.
SI NTEGER nYearnYear = DATE_TO YEAR ('2/9/1999') // nYear = 1999

DAY

This system variable returns the current day of the week as one of the following strings: 'MON', 'TUE', 'WED', 'THU', 'FRI',
'SAT' or 'SUN".
Example:

I F (DAY = ' SUN')

{

}

DAY_OF_WEEK

This function returns the day of the week for the specified date.
SI NTEGER DAY_OF WEEK (CHAR LDATE[])

Parameters:

» LDATE: String containing the date in mm/dd/yyyy format.

This function returns an SINTEGER representing the day of the week (1 = Sunday, 2 = Monday, etc.).
SI NTEGER nDay = DAY _OF WEEK ('2/13/1999') // nDay = 7 (Saturday)

LDATE

This system variable returns the current date in (mm/dd/yyyy) string format.
| F (LDATE = ' 12/25/2000'){}

Language Reference Guide - NetLinx Programming 132

Time and Date Keywords

Time and Date Keywords (Cont.)

TIME

This keyword holds the current time as a string in the form "hh:mm:ss". The time is represented in 24-hour format.
IF (TIME = '23:59:59")

{

}

TIME_TO_HOUR

This function returns an integer representing the hour portion of a time string.
SI NTEGER TI ME_TO HOUR (CHAR TineStr[1)
Parameters:
* TimeStr: Input string containing the time in hh:mm:ss format.
If successful, this function returns an integer (0-23) representing the hour portion of the time string. The specified time is
invalid, this function returns -1.
CHAR TimeStr[] = '9:30:08
SI NTEGER nHour
nHour = TIME_TO HOUR (Ti neStr) /1 nHour =9

TIME_TO_MINUTE

This function returns an integer representing the minute portion of a time string.
SINTEGER TI ME_TO M NUTE (CHAR TineStr[1)
Parameters:
* TimeStr: Input string containing the time in hh:mm:ss format.
If successful, this function returns an integer (0-59) representing the minute portion of the time string. If the specified
time is invalid, this function returns -1.
CHAR TimeStr[] = '9:30:08
SI NTEGER nM nut e
nM nute = TIME_TO M NUTE (TineStr) // nMnute = 30

TIME_TO_SECOND

This function returns an integer representing the second portion of a time string.
SI NTEGER TI ME_TO SECOND (CHAR TineStr[1)
Parameters:
* TimeStr: Input string containing the time in hh:mm:ss format.
If successful, this function returns an integer (0-59) representing the second portion of the time string. If the specified
time is invalid, this function returns -1.
CHAR TimeStr[] = '9:30:08
S| NTEGER nSecond
nSecond = TI ME_TO SECOND (TineStr) // nSecond = 8

Language Reference Guide - NetLinx Programming 133

Timeline Keywords

Timeline Keywords

Overview

NetLinx timeline functions provide a mechanism for triggering events based upon a sequence of times. The sequence of times is
passed into the timeline functions as an array of LONGvalues, with each value representing a time period (in milliseconds) that is
either relative to the start time of the timeline or to the previously triggered event.

NOTE: Timelines introduce the capability to dynamically set up a timed sequence, provide the user with a mechanism to modify the
sequence, and allow the user to create, delete, and modify sequences.

The old way of programming timed sequences was to cascade or nest WAITs. Using nested WAITs hard-coded the timed sequence;
so, the only way to modify the timing was to modify the NetLinx program, recompile, and download. Timelines make adding, deleting
and editing the sequence much simpler for the programmer. Timeline functions and debugging allow the timings to be modified
without the modify/ compile/ download cycle because the array of times may be modified via NetLinx debugging. Once the timings
have been tweaked, the changes can be incorporated in the NetLinx program.

Creating a Timeline

Timelines are represented by the illustration in (FIG. 4). When the TIMELINE_CREATE function is executed, the timeline starts at
zero and begins counting. When the timer value equals a value in the TIMES array, a TIMELINE_EVENT is triggered. Within the
timeline event, a TIMELINE structure is available to get information about the specific time from the TIMES array that generated the
event. When a relative timeline is created, the NetLinx Master converts the provided relative times into absolute times that are
stored internally.

TIMELINE_EVENT [TL1]

Triggered
TIMELINE_CREATE z
—
Time 0 ‘ ‘
1000 2000 3000 4000 5000
‘ ‘ Time (1mS resolution)
|

Timeline.Sequence = 1 2 3 4 5

FIG. 4 Timeline representation

The TIMELINE structure contains the following members:
STRUCTURE TI MELI NE

{

| NTEGER ID /luser supplied ID

| NTEGER SEQUENCE //index in Tinmes array

LONG TI ME //time since start of timeline

I NTEGER RELATI VE // 0=absol ute 1=rel ative

LONG REPETI TI ON /1# of |oops for repeating tineline
}

Each TIMELINE data member is defined as follows:

+ ID: The ID that the user assigned to the timeline in the TIMELINE_CREATE function.

* SEQUENCE: The index of the time in the Times array that was passed to the TIMELINE_CREATE function. The SEQUENCE data member is used to
determine what action to take for the event and is normally decoded with a SWITCH/CASE structure (as shown in the example).

* TIME: The amount of time that has elapsed since the timeline started. For repeating timelines, the TIME and REPETITION data members can be used
to calculate the total amount of time it has been running.

* RELATIVE: If the timeline is operating in relative mode, this data member is equal to TIMELINE_RELATIVE. If the timeline is absolute, it is equal to
TIMELINE_ABSOLUTE.

* REPETITION: If the timeline was created with TIMELINE_REPEAT, this data member holds the number of times the timeline has been executed.
REPETITION contains zero for the first pass through the timeline. Thus, the calculation to determine the total amount of time the timeline has been
running is simply:

TI MELI NE. TI ME * TI MELI NE. REPETI TI ON.

Return Values:

0 | Successful

1 | Timeline ID already in use

Specified array is not an array of LONGs

2
3 | Specified length is greater than the length of the passed array
a4

Out of memory

Language Reference Guide - NetLinx Programming 134

Timeline Keywords

Example:

DEFI NE_VARI ABLE
LONG Ti meAr r ay[100]

DEFI NE_CONSTANT

TL1 = 1
TL2 = 2
DEFI NE_EVENT
TI MELI NE_EVENT[TL1] // capture all events for Tineline 1
{
swi tch(Ti neline. Sequence) // which tine was it?
{
case 1: { SEND_COWAND dvPanel ,"' TEXT1-1 1'" }
case 2: { SEND_COWAND dvPanel ,"' TEXT1-1 2'" }
case 3: { SEND_COWAND dvPanel ,"' TEXT1-1 3'" }
case 4: { SEND_COWAND dvPanel ,"' TEXT1-1 4'" }
case 5. { SEND_COWAND dvPanel ,"' TEXT1-1 5'" }
}
}
TI MELI NE_EVENT[TL2]
{
swi t ch(Ti nel i ne. Sequence)
{
case 1: { SEND_COWAND dvPanel ,"' TEXT2-2 1'" }
case 2: { SEND_COWAND dvPanel ,"' TEXT2-2 2'" }
case 3: { SEND_COWAND dvPanel ,"' TEXT2-2 3'" }
case 4: { SEND_COWAND dvPanel ,"' TEXT2-2 4'" }
case 5. { SEND_COWAND dvPanel ,"' TEXT2-2 5'" }
}
}

DEFI NE_PROGRAM

PUSH] dvPanel , 1]

{
Ti neArray[1] = 1000
Ti meArray[2] = 2000
Ti neArray[3] = 3000

Ti meArray[4] = 4000
Ti neArray[5] = 5000
TI MELI NE_CREATE(TL1, TimeArray, 5, TIMELI NE_ABSOLUTE, Tl MELI NE_REPEAT)

}

PUSH[dvPanel , 2]

{
Ti meArray[1] = 1000
Ti neArray[2] = 1000

Ti meArray[3] = 1000
Ti neArray[4] = 1000
Ti meArray[5] = 1000
TI MELI NE_CREATE(TL2, TimeArray, 5, TIMELI NE_RELATIVE, TI MELI NE_ONCE)
}
The example above creates two timelines (TL1 and TL2) that trigger events at the same rate (once per second).

e TL1 uses TIMELINE_ABSOLUTE to specify that the times in TimeArray are absolute with respect to the start of the timeline.
Since TL1 specifies the TIMELINE_REPEAT, it is also repeating and will generate a TIMELINE_EVENT every second iterating
through all five times in a round-robin fashion: 1,2,3,4,5,1,2,3,4,5,1,2,3, and so on.

e TL2 uses TIMELINE_RELATIVE to specify that the times in TimeArray are relative to each other (i.e. each events occurs
1000 milliseconds after the previous). Since TL2 specifies the TIMELINE_ONCE parameter, it will execute the entire
timeline once, then stop: 1,2,3,4,5.

TIMELINE Example

The following code is an example of how to use Tl MELI NE functions.
PROGRAM _NAME=' Ti nel i neExanpl e’

(*{{ PS_SOURCE_I NFO(PROGRAM STATS) *)
(***)
(* FILE CREATED ON: 05/22/2001 AT: 12:05:56 *)
(***)
(* FILE_LAST_MODI FI ED ON: 05/22/2001 AT: 12:15: 56 *)
(***)
(* ORPHAN FI LE_PLATFORM 1 *)

(***)

Language Reference Guide - NetLinx Programming 135

(*!''FI LE REVI SI ON: *)
(* REVISION DATE: 05/22/2001 *)

(* *)

(* COMENTS: ")

* *
(***)

(*}}PS_SQURCE_I NFO *)

(***)

(***)

(* DEVI CE NUMBER DEFI NI TI ONS GO BELOW *)

(***)

DEFI NE_DEVI CE
dvPanel = 128:1:0
dvDebug =0:0:0

(***)

(* CONSTANT DEFI NI TI ONS GO BELOW *)
(***)
DEFI NE_CONSTANT

MY_LINE1 =1

MY_LINE 2 = 2

(***)

(* VARI ABLE DEFI NI TI ONS GO BELOW *)
(***)
DEFI NE_VARI ABLE

LONG Ti neAr r ay[100]

| NTEGER i Loop

(***)

(* STARTUP CODE GOES BELOW *)
(***)
DEFI NE_START

(***)

(* THE EVENTS GOES BELOW *)
(***)
DEFI NE_EVENT

TI MELI NE_EVENT[MY_LI NE_1]
{

swi t ch(Ti el i ne. Sequence)

{

case 1: { SEND_COWAND dvPanel ,"' TEXT1-1 1'" }
case 2: { SEND COWAND dvPanel , "' TEXT1-1 2'" }
case 3: { SEND_COWAND dvPanel ,"' TEXT1-1 3'" }
case 4: { SEND COWAND dvPanel , "' TEXT1-1 4'" }
case 5: { SEND_COWAND dvPanel ,"' TEXT1-1 5'" }

}
SEND_STRI NG dvDebug, "' Tinmer ', I TOA(Tineline.ID)," Event ',|TOA(Ti neline.Sequence),
' Time="',I TOA(Tineline. Tine),
'Repetition = ', I TOA(Ti neline. Repetition),' Relative = ',ITOA(Tineline.Relative)"
}
TI MELI NE_EVENT[MY_LI NE_2]
{

swi t ch(Ti mel i ne. Sequence)

{

case 1: { SEND_COWAND dvPanel ,"' TEXT2-2 1'" }
case 2: { SEND COMVAND dvPanel , "' TEXT2-2 2'" }
case 3: { SEND_COWAND dvPanel ,"' TEXT2-2 3'" }
case 4: { SEND COMVAND dvPanel , "' TEXT2-2 4'" }
case 5: { SEND_COWAND dvPanel ,"' TEXT2-2 5'" }

}

SEND_STRI NG dvDebug, "' Tinmer ', I TOA(Tineline.ID)," Event ',|TOA(Ti neline.Sequence),
" 'Time = ', I TOA(Tineline.Tine),' Repetition = ',1TOA(Ti neline.Repetition),
' Relative = ',ITOA(Ti neline.Relative)"

}

(***)

(* THE ACTUAL PROGRAM GCES BELOW *)

(***)

DEFI NE_PROGRAM

Language Reference Guide - NetLinx Programming

Timeline Keywords

136

Timeline Keywords

(***)

(* create will sort the order of the tinmes but index stays *)
(* with the time. This exanple will execute 1 2 4 3 5 *)
(* sequence nunbers *)

(***)

PUSH] dvPanel , 1]

{

TineArray[1] = 1000
Ti meArray[2] = 2000
Ti neArray[4] = 3000
Ti meArray[3] = 4000

TineArray[5] = 5000
TI MELI NE_CREATE(MY_LI NE_1, Ti meArray, 5, TI MELI NE_ABSOLUTE, TI MELI NE_ONCE)

}
PUSH[dvPanel , 2]
{

TineArray[1] = 1000

Ti meArray[2] = 2000

Ti neArray[3] = 3000

Ti meArray[4] = 4000

Ti neArray[5] = 5000

TI MELI NE_CREATE(MY_LI NE_2, Ti neArray, 5, TI MELI NE_ABSOLUTE, Tl MELI NE_REPEAT)

}

(***)

(* Modify the tineline ny kill, pause and restarting *)
(***)
PUSH[dvPanel , 3]
{

I F(TI MELI NE_ACTI VE(MY_LI NE_1)) TI MELI NE_KI LL(MY_LI NE_1)

I F(TI MELI NE_ACTI VE(MY_LI NE_2)) TI MELI NE_KI LL(MY_LI NE_2)

}
PUSH] dvPanel , 4]

| F(TI MELI NE_ACTI VE(MY_LI NE_1)) TI MELI NE_PAUSE(MY_LI NE_1)
I F(TI MELI NE_ACTI VE(MY_LI NE_2)) TI MELI NE_PAUSE(MY_LI NE_2)

}
PUSH[dvPanel , 5]
{
I F(TI MELI NE_ACTI VE(MY_LI NE_1)) TI MELI NE_RESTART(MY_LI NE_1)
I F(TI MELI NE_ACTI VE(MY_LI NE_2)) TI MELI NE_RESTART(MY_LI NE_2)
}

(***)

(* Force tinme to a different val ue *)

(***)

PUSH] dvPanel , 6]

I'F (TI MELI NE_ACTI VE(MY_LI NE_1))
TI MELI NE_SET(MY_LI NE_1, 2000)

}

(***)

(* Get the current time fromcreate *)

(***)

PUSH[dvPanel , 7]

{

SEND_COMVAND dvPanel ,"' TEXT3-'," ' Tinmer 1 Tine is ', | TOA(TI MELI NE_GET(MY_LINE 1))"
SEND_COMVAND dvPanel , "' TEXT4-',' Timer 2 Tine is ', | TOA(TI MELI NE_GET(MY_LINE_2))"

}

(***)

(* Pause and restart the tineline at new | ocations *)

(***)
PUSH[dvPanel , 8]
{

TI MELI NE_PAUSE(MY_LI NE_1)

TI MELI NE_PAUSE(MY_LI NE_2)

TI MELI NE_SET(MY_LI NE_1, 0)

TI MELI NE_SET(MY_LI NE_2, 0)

TI MELI NE_RESTART(MY_LI NE_1)

TI MELI NE_RESTART(MY_LI NE_2)

Language Reference Guide - NetLinx Programming 137

Timeline Keywords

(***)

(* END OF PROGRAM *)
(* DO NOT PUT ANY CODE BELOW THI'S COVVENT *)
(***)
TIMELINE IDs

When creating a TIMELINE_EVENT, the timeline ID must be a user defined long constant. The compiler will not semantic check the
type of the timeline ID, and the NetLinx runtime system will attempt to cast the contents of the timeline ID constant, to a long
constant. A runtime error will occur if the cast is unsuccessful.

Here's an example of TIMELINE code:

DEFI NE_VARI ABLE

CONSTANT LONG TinelinelD_1 =
CONSTANT LONG Ti nel i nel D_2
CONSTANT LONG Ti nel i nel D_3
CONSTANT LONG Ti nel i nel D_4
LONG Ti meArray[4] =

o
A wWN P

{
1000, // 1 second
2000, // 2 seconds
3000, // 3 seconds
4000 // 4 seconds

}

DEFI NE_START

TI MELI NE_CREATE (Ti mel i nel D_1, Ti meAr r ay, LENGTH_ARRAY(Ti meAr ray) , TI MELI NE_RELATI VE, TI MELI NE_REPEAT)
TI MELI NE_CREATE (Ti el i nel D_2, Ti meAr r ay, LENGTH_ARRAY(Ti meAr ray) , TI MELI NE_RELATI VE, TI MELI NE_REPEAT)
TI MELI NE_CREATE (Ti mel i nel D_3, Ti meAr r ay, LENGTH_ARRAY(Ti meAr ray) , TI MELI NE_RELATI VE, TI MELI NE_REPEAT)
TI MELI NE_CREATE (Ti el i nel D_4, Ti meAr r ay, LENGTH_ARRAY(Ti meAr ray) , TI MELI NE_RELATI VE, TI MELI NE_REPEAT)

DEFI NE_EVENT
/1 typical TIMELINE_EVENT statenent
TI MELI NE_EVENT[Ti el inel D_1] // capture all events for Tineline 1
{
SEND_STRING 0,"'TL ID ="', itoa(tineline.id),', sequence = ',itoa(tineline.sequence)"
}
/| exanple of "stacked" TIMELI NE_EVENT statenents
TI MELI NE_EVENT[Tinelinel D 2] // capture all events for Tineline 2
TI MELI NE_EVENT[Ti el inel D_3] // capture all events for Tinmeline 3
TI MELI NE_EVENT[Tinelinel D 4] // capture all events for Tineline 4

{

SEND STRING 0,"'TL ID ="', itoa(tineline.id),', sequence = ',itoa(tineline.sequence)”
}
/'l end

NetLinx supports the following TIMELINE keywords:

TIMELINE Keywords

TIMELINE_ACTIVE | This function is used to determine if a timeline has been created. If the timeline does not exist (i.e. TIMELINE_CREATE has
not been called) this function returns zero.
I NTEGER TI MELI NE_ACTI VE(LONG | d)
Parameters:
» |1 d: Auser defined value that uniquely identifies this timeline. Each timeline must be assigned a unique identifier starting
with number one.
Returns:
* 0: Not created.
* Non-zero: The timeline has been created.
I F(TI MELI NE_ACTI VE(TL1)) // if tineline 1 is running

/1 do sonething

}
TIMELINE_CREATE | Creates an initial timeline and specifies the attributes of the timeline. Time is measured in millisecond (1/1000 of a second)
increments.
| NTEGER TI MELI NE_CREATE(LONG I d, LONG Tinmes[],LONG Length, LONG Rel ative, LONG Repeat)
Parameters:

« Id: A user defined value that uniquely identifies this timeline. Each timeline must be assigned a unique identifier starting
with number one.

* Times: An array of times where each time specifies when a TIMELINE_EVENT will be triggered. The times in the array may
be relative to each other or relative to the start of the timeline depending upon the Relative parameter. For an absolute
timeline, it is not necessary for the times in the array to be sorted in any particular order (the NetLinx master does this
internally for you). The NetLinx master makes an internal copy of the values in the array allowing the user to modify the
passed in array as desired without affecting the operation of the timeline.

* Length: The count of times in the Times array.

* Relative: Indicates whether the Times array contains relative times or absolute times.

« Relative indicates the each time given is relative to the last event time (i.e. the time delay in between the triggered events).

» Absolute indicates that each time given is absolute with respect to the start of the timeline.

* Repeat: Indicates whether the timeline should automatically start over again when Length events have been triggered.

TIMELINE Keywords (Cont.)

Language Reference Guide - NetLinx Programming 138

Timeline Keywords

TIMELINE_EVENT

These events are generated when a timeline's internal timer is equal to one of the specified times in the times array. The
TIMELINE_EVENT must be placed in the DEFINE_EVENT section of the program.
TI MELI NE_EVENT[ti el i nel D

See the TIMELINE_CREATE function (above) for a more detailed description.

TIMELINE_GET

This function returns the value of the specified timeline's timer. The timer indicates the number of milliseconds that have
passed since the timeline started. If the timeline is paused the timer is also paused and subsequent calls to TIMELINE_GET
will return the same value.

LONG TI MELI NE_GET (LONG Id)
Parameters:
» Id: A user defined value that uniquely identifies this timeline. Each timeline must be assigned a unique identifier starting
with number one.
Result: This function returns the specified timeline's internal timer. The timer value represents the number of milliseconds
that have passed since the timeline started.
TI MELI NE_SET (TL1, TI MELI NE_GET (TL1)+1000)
/1 junp ahead 1 second

TIMELINE_KILL

This function is used to terminate a timeline. Any further references to the specified timeline ID are invalid.
I NTEGER TI MELI NE_KI LL(LONG I d)
Parameters:
» Id: A user defined value that uniquely identifies this timeline. Each timeline must be assigned a unique identifier starting
with number one.
Result:
* 0:Successful
* 1: Specified timeline ID invalid
TI MELI NE_KI LL(TL1) /1 permanently destroy the tineline

TIMELINE_PAUSE

This function is used to suspend the execution of a timeline. It may be restarted from where it left off with the
TIMELINE_RESTART function.

I NTEGER TI MELI NE_PAUSE(LONG | d)
Parameters:
» Id: A user defined value that uniquely identifies this timeline. Each timeline must be assigned a unique identifier starting
with number one.
Result:
* 0: Successful
» 1: Specified timeline ID invalid
TI MELI NE_PAUSE(TL1) /1 monentarily suspend the tineline

TIMELINE_RELOAD

This function is used to change the array times of a timeline. The new array of times takes affect immediately even if the
timeline is currently executing. If the timeline is executing when this function is called the timeline continues to execute and
the next matching time from the new array triggers an event.

I NTEGER Tl MELI NE_RELOAD(LONG I d, LONG Tines[], LONG Length)

Parameters:

» Id: A user defined value that uniquely identifies this timeline. Each timeline must be assigned a unique identifier starting
with number one.

* Times: An array of times where each time specifies when a TIMELINE_EVENT will be triggered. The times in the array
must utilize the same time base (TIMELINE_RELATIVE or TIMELINE_ABSOLUTE) as determined by the original call to
TIMELINE_CREATE. The NetLinx master makes an internal copy of the values in the array allowing the user to modify the
passed in array as desired without affecting the operation of the timeline.

* Length: The count of times in the Times array.

Result:

0: Successful

1: Timeline ID already in use

2: Specified array is not an array of LONGs.

3: Specified length is greater than the length of the passed array.
4: Out of memory

Ti meArray[1] = 1000
Ti meArray[2] = 1500
Ti meArray[3] = 2000

TI MELI NE_RELOAD(TL1, TimeArray, 3) // Mdify the tineline

TIMELINE_RESTART

This function is used to continue execution of a timeline that was suspended with TI MELI NE_PAUSE.
I NTEGER TI MELI NE_RESTART(LONG | d)

Parameters:

« Id: A user defined value that uniquely identifies this timeline. Each timeline must be assigned a unique identifier starting
with number one.

Result:
0: Successful
1: Specified timeline ID invalid

TI MELI NE_RESTART(TL1) /1 continue the tineline

TIMELINE Keywords (Cont.)

Language Reference Guide - NetLinx Programming

139

Timeline Keywords

TIMELINE_SET This function is used to modify the current timer value of a timeline. The timeline's timer is immediately set to the new value
regardless of whether the timeline is executing or not.

I NTEGER TI MELI NE_SET (LONG Id, LONG Timer)
Parameters:

+ Id: A user defined value that uniquely identifies this timeline. Each timeline must be assigned a unique identifier starting
with number one.

* Timer: The new value for the timeline's internal timer.
Result:

0: Successful

1: Specified timeline ID invalid

2: Specified timer value out of range
TI MELI NE_SET (TL1,0) // start it over again

Language Reference Guide - NetLinx Programming 140

UniCode Keywords

UniCode Keywords

Overview

NetLinx UniCode Functions allow programmers to embed Unicode String literals in their NetLinx programs, manipulate them using
run-time functions and send them to touch panels and other user interfaces.

Working With UniCode in NetLinx Studio

NetLinx supports 16-bit Unicode characters. You can type Unicode character literals strings into you program, assigned them to
variables, manipulate them using string operations, read and write Unicode characters to the file system and send Unicode strings
to user interfaces for display.

Configuring NetLinx Studio

Before you begin to work with Unicode, you must enable the UTF-8 Unicode option and the Unicode Compile option in NetLinx
Studio. The UTF-8 Unicode option will tell Studio to store your file as UTF-8, which will support Unicode characters. The Unicode
Compile option will tell Studio to process the _WC pre-processor statements to properly handle Unicode embedded in your source
files at compile time.

Enabling UTF-8 in NetLinx Studio
1. Choose Settings-> Preferences from the menu bar.
2. Select the Editor - Display and Indentations (FIG. 5).

AXCESS Compiler Dispiay Frnter
7 Humbe
MetLine Campiler %:2 L':: : — (@) Pt Black on Whte
; 2 3 2 AuioComplate =
Editor - Display and Identations [] Wtin Comments . Print Color on White
i ! . — Prirt Color on VWhile
Editor - Highlighting and Fants (7| Eneile Indermation Guides © byt Irvert Light Colora
| Enaie CalTips
Warkspace] Enshie Code Eolding Clipboard Text Buffer
General (| Enable UTF-E format to display Hebrew, Max tems: 20 3~
Arsbic, Cynilic, and Han chamcters -
Terminal - Telnet Windews — Max Diaplay Width: 5 |2
[Trim Bfank= at ths End of a Line |
File Transter +#] Enaible Column Edge Markeer Cloar Text Buffer History..
Diagnasties Column Edge: |20
Online Tree - Zero Config ¥] Retan Baokmarks upon closing of File
(] Highlight Mefiching Braces

Tabs and Indentation Freferences

Settah stops every |8 chavacters. (0
Indert before text with 4 | charscters. Z]
[Enable Auto-indentation (2]

FIG. 5 NetLinx Studio - Preferences dialog (Editor - Display and Indentations options)

3. Under Display, check the Enable UTF-8 format to display Hebrew, Arabic, Cyrillic and Han characters checkbox.
4. Click OK to save changes and close the Preferences dialog.

Enabling Unicode Compiling in NetLinx Studio

1. Choose Settings > Preferences from the menu bar

2. Select the NetLinx Compiler tab (FIG. 6).

Language Reference Guide - NetLinx Programming 141

UniCode Keywords

AXCESS Compiler Options

[] Compile With Debug Irfo
[Buid With Source
[Buid With Passward Protection

| MetLinx Compiler |
Editor - Display and Identations

Editor - Highlighting and Fonts

Waorkspae | [V Enable _WC Preprocessor (Unicode)
General

Drectones

T I - Telnet YWind "
ERL = LHDEL W Libeary Files W Need Adminisirator Rights 4 w &

C:\Program Files (xB5)\Comman Filas'\AMXShare \SY s\

File Transfer
Diagnostics

Online Tree - Zero Config

FIG. 6 NetLinx Studio - Preferences dialog (NetLinx Compiler options)
3. Under Options, check the Enable _WC Preprocessor checkbox.
4. Click OK to save changes and close the Preferences dialog.

Including the Unicode Library

The Unicode Library is implemented in a NetLinx Include file, UnicodelLib.axi, that must be included in your program in order to
access the Unicode functions.

The Unicode Library is located in an Include file located in the C:\Program Files\Common Files\AMXShare\AXIs directory.
Because this location is the default Include search path, you do not need to specify the directory in the include statement.

To include the Unicode Library to your program add these lines to your program:

(***)

(* I NCLUDE FI LES GO BELOW *)

(***)

#1 NCLUDE ' Uni codelLi b. axi'
Defining a Unicode String Literal
To enter Unicode characters into your program, enclose the characters in single quotes, like you would any other string, and wrap
the string literal in the Unicode macro _WC. Here is an example:

_WC(' Your string goes here')
e All Unicode string literals must be wrapped in the _WC macro.

e Failing to wrap a Unicode string in the _WC macro will result in a compiler error.

Storing a Unicode String
Unicode strings are stored in W DECHAR arrays, similar to the way ASCII strings are stored in CHAR arrays. To define a W DECHAR
constant or variable and initialize it using a Unicode string literal, use the following syntax:
W DECHAR weMyString[] = _WC(' My String')
NOTE: The "wc" prefix is Hungarian notation for widechar. This is simply a programming convention and is completely optional.

Hungarian notation helps you better identify your variables while you are programming and is a general recommended standard. For
more information, see Wikipedia's Hungarian Notation page.

Working with WIDECHAR Arrays and Unicode Strings

Working with W DECHAR arrays and Unicode strings is very similar to working with CHAR arrays and ASCII strings. Most operation
that can be performed on a CHAR array can be performed on a W DECHAR array.
For instance, to assign a string to a variable use this syntax:

weMyString = _WC(' Wy String')
The string functions defined for CHAR arrays have been defined for W DECHAR array for use in Unicode programming. These
functions allow you to operate on strings similar to the way you would with CHAR array. For instance, to remove the first 3
characters from a W DECHAR array and return those characters as a W DECHAR array, use WC_GET_BUFFER_STRI NG

wcRenpbved = WC_GET_BUFFER_STRI NG(wcMyStri ng, 3)

Language Reference Guide - NetLinx Programming 142

UniCode Keywords

You will find that most other function work exactly as their CHAR counterpart do except they work on and return W DECHAR arrays.
The list of Unicode compatible functions is:

e WC_COVPARE_STRI NG

e WC GET_BUFFER CHAR

e WC GET_BUFFER_STRI NG

e W LEFT_STRI NG

e \C FI ND_STRI NG

e WC_LENGTH_STRI NG

e WC LOWER STRI NG

e WC _MAX_LENGTH_STRI NG

e WC_ M D STRING

e WC REMOVE STRI NG

e WC RI GHT_STRI NG
e WC SET_LENGTH_STRI NG
e WC _UPPER STRI NG

Character Case Mappings

Converting between upper and lower case is accomplished by using the Unicode.org character database to determine the mapping
between upper case and lower case characters. Not all Unicode characters have an upper or lower case equivalent; these
characters will not be affected by WC_UPPER_STRI NGand WC_LOAER_STRI NG Only the characters defined by Unicode.org as
having an upper or lower case mapping are affected by these functions.

For more information on Unicode character conversion, see the Unicode.org character conversion FAQ.

Concatenating String
Unicode strings and W DECHAR array cannot be concatenated using the same syntax that ASCII strings use. In NetLinx, string
expressions are enclosed in double quotes and can only contain 8-bit strings. To concatenate Unicode strings and W DECHAR
arrays, you must use the WC_CONCAT_STRI NGfunction:

weMyString = WC_CONCAT_STRI NG(_WC(' First name'),_WC(' Surnane'))
If you attempt to concatenate Unicode strings or W DECHAR arrays using NetLinx string expressions, expect data loss.

Converting Between WIDECHAR and CHAR

On occasion, you may need to convert a CHAR array to a W DECHAR array or a W DECHAR array to a CHAR array. The CH_TO WCand
WC_TO_CH functions can be used to accomplish these conversions. For example:

weMyString = CH. TO WC(' Any ASCII string')

weMyString = CH.TO WX(cMyString)

cWString = WC_TO CH(_WC(' Any Uni code string'))
cWString = WC_TO CH (wMyStri ng)

e When converting from W DECHAR to CHAR, Unicode characters are converted to '?"'.

e Any ASCII or extended ASCII characters, i.e. 8-bit characters, contained in the W DECHAR array will appear in the CHAR
array.

e Converting from CHAR to W DECHAR never results in loss of data.

Using FORMAT

The NetLinx Unicode library does not include a Unicode compatible FORMAT function. In NetLinx, the FORMAT function is used to
convert numbers to text. To use FORMAT with Unicode string, use FORMAT to convert the number to a CHAR array and then use
CH_TO WCand WC_CONCAT_STRI NGto combine the result with an existing W DECHAR array.

The following two syntaxes are functionality equivalent:

f Tenperature = 98. 652
cMString = FORMAT(' The current tenperature is 93.2f', fTenperature)

f Tenperature = 98. 652

cTempString = FORMAT(' 98. 2f ', f Tenper at ure)

weMyString = _WC(' The current tenperature is ')

weMyString = WC_CONCAT_STRI NG(wcMy St ring, CH TO WC(cTenpString))

Reading and Writing to Files

The NetLinx Unicode library supports reading and writing of W DECHAR arrays. The WC_FI LE routines operate the same as the

FI LE routines with the exception of FI LE_OPEN. WC_FI LE_OPEN takes an additional parameter; the file format. The

WC _FI LE_OPENTreturns a special file handle so it is important to only use the file handle returned by WC_FI LE_OPEN with other
WC _FI LE functions and the file handle used with WC_FI LE functions must have been obtained by calling WC_FI LE_OPEN.

The NetLinx Unicode library supports three different file formats for compatibility with files created on a computer. Windows
Notepad supports the same three file formats so files created in Notepad can be read using the WC_FI LE routines and files created
using the WC_FI LE routines can be read with Notepad.

When reading or appending to file, the file format is automatically determined when the file is opened. You can pass in a variable to
WC _FI LE_OPEN and the function will set the variable to the file format that was detected. When writing files, the file format
parameter will determine how data is written to the file. The following constants can be used for specifying or checking the file
format: WC_FORMAT _UNI CODE, WC_FORMAT _UNI CODE_BE, WC_FORMAT_UTFS8.

Language Reference Guide - NetLinx Programming 143

UniCode Keywords

The Unicode file format, specified by the constant WC_FORMAT_UNI CODE, is the fastest to encode and decode. You should use this
format unless you have a particular application that requires either UTF-8 or Unicode BE encoding.

The WC_FI LE_READ/ WRI TE functions take the number of characters that will be read or written to the file. However, the functions
return the number of bytes read or written to the file, not the number of characters. For Unicode and Unicode BE encoding, there
are 2 bytes for every character.

For UTF-8 encoding, the number of bytes for every character varies depending on the character.

Unicode filenames are not supported. The parameter for the file name is a CHAR array. Always use a non-Unicode name for the file.
The following file functions support W DECHAR arrays:

VC_FI LE_OPEN

e WC FILE_CLOSE

e W\C FI LE_READ

e WC FILE READ LI NE

e WC FILE WRI TE

e W FILE WRI TE_LINE

Send Strings to a User Interface
Sending a W DECHAR array to a user interface is accomplished using WC_TP_ENCODE. WC_TP_ENCODE takes a W DECHAR array
and returns a CHAR array formatted for a user interface UNI or BAU command.

cMyString = WC_TP_ENCODE(wcM/ St ri ng)

SEND_COMVAND dvTP, "' AUNI-1,0,"',cM/String "
Right-to-Left Unicode Strings
Right-to-Left Unicode languages are stored in memory the same way left-to-right language are. The first memory position of an
array contains the first logical character.
You can access the right-most character of a Right-to-Left Unicode string using this notation:

wchChar = weString[1]
Right-to-left languages are not stored differently than left-to-right languages, they are simply rendered differently than right to left
languages. However, note that the functions WC_LEFT_STRI NGand WC_RI GHT_STRI NGremove a number of characters from the
start and end of a string respectively.

Using WC_LEFT_STRI NGon a right-to-left language will return the number of right-most, i.e. first, characters you requested, not
the left-most, i.e. end, characters.

WC_LEFT_STRI NGreturns the number of characters request from the front of the string and WC_RI GHT_STRI NGreturn the
number of characters requested from the end of the string, regardless of the language's orientation.

Compiler Errors

The most common type of compiler errors you will encounter while programming for Unicode are caused by not wrapping Unicode
string literals in _WC, passing a W DECHAR to a function that take a CHAR array or passing a CHAR array to a function that takes a
W DECHAR array.

If you forget to wrap a Unicode string in _WC, expect to see the following compiler error:
On the line where the string is defined:
C10571: Converting type [string] to [W DECHAR]
On the line where the constant or variable is used:
C10585: Dinension msmatch: [1] vs. [0] and C10533: |llegal assignment statenent
If you try to pass a CHAR array to a function that expects a W DECHAR array, expect to see the following compiler error:
On the line where the function call is made
C10585: Dinension msmatch: [1] vs. [0] and Type mismatch in call for paraneter [WCDATA]
If you try to pass a W DECHAR array to a function that expects a CHAR array, expect to see the following compiler error:
On the line where the function call is made
C10585: Dinmension msmatch: [1] vs. [0] and Type nmisnmatch in call for paranmeter [A]

NOTE: Parameter names might not match those listed above.

Language Reference Guide - NetLinx Programming 144

UniCode Keywords

UniCode Keywords

The NetLinx programming language supports the following Unicode keywords:

UniCode Keywords

_WC This keyword is a macro for Unicode strings. All Unicode string literals must be contained in single quotes and in the
macro.
W DECHAR wcData[] = WC(' Uni code String')

WC_COMPARE_STRING This keyword compares two Unicode strings. If either string contains a '?' character, the matching character in the
other string is not compared. The '?' is equivalent to a wildcard. For example:
| NTEGER WC_COMPARE_STRI NG(W DECHAR STR1[], W DECHAR STR2[])
Parameters:
* STRI - the first widechar string to be compared.
¢ STR2 - the first widechar string to be compared.
Result:
The returned result can only be True (1) or False (0).
¢ 0 = the strings don't match
¢ 1 =the strings are the same
See COVPARE_STRI NG (page 125) for a code example.

WC_CONCAT_STRING This keyword concatenates two W DECHAR arrays.
W DECHAR[] WD_CONCAT_STRI NG(W DECHAR STR1[], W DECHAR STR2[])
Parameters:

* STRI - the first widechar string to be concatenated.

* STR2 - the first widechar string to be concatenated.

Result:

A widechar string which concatenates STR1 and STR2
weMyString = WC_CONCAT_STRI NG(weStringl, wcString2)

WC_DECODE This function decodes Unicode string from a character string using one of 4 formats.
W DECHAR]] WC _DECODE(CHAR cData[], |NTEGER Fornmat, LONG Start)
Parameters:
« cDat a: String containing the encoded Unicode string
* Fornmat:

1 Unicode: The data is encoded as a Unicode formatted stream. The constant WC_FORMAT_UNI CODE is defined
as a value of 1 for specifying this format.
2 Unicode BE: The data is encoded as a Unicode BE (Big Endian) formatted stream. The constant
WC_FORMAT_UNI CODE_BE is defined as a value of 2 for specifying this format.
3 UTF-8: The data is encoded as a UTF-8 formatted stream. The constant WC_FORMAT_UTF8 is defined as a value
of 3 for specifying this format.
4 TP: The data is encoded for use with the UNI TP command. The constant WC_FORMAT_TP is defined as a value
of 4 for specifying this format.

* St at : Position in Data from which to start reading

Result:

A W DECHAR array containing the Unicode data.

weMyString = WC_DECODE(cData, WC_FORVAT_UNI CODE, 1)

WC_ENCODE This function encodes a Unicode string to a character string using one of 4 formats.
W DECHAR]] WC_ENCODE(W DECHAR STRING], | NTEGER Fornmat, LONG Start)
Parameters:
* STRI NG String containing the Unicode string to encode
* Fornmat:

1 Unicode: Encode the data as a Unicode formatted stream. The constant WC_FORMAT_UNI CODE is defined as a
value of 1 for specifying this format.
2 Unicode BE: Encode the data as a Unicode BE (Big Endian) formatted stream. The constant
WC_FORMAT_UNI CODE_BE is defined as a value of 2 for specifying this format.
3 UTF-8: Encode the data as a UTF-8 formatted stream. The constant WC_FORMAT_UTF8 is defined as a value of
3 for specifying this format.
4 TP: Encode the data for use with the UNI TP command. The constant WC_FORMAT_TP is defined as a value of 4
for specifying this format.

« Stat: Position in STRI NGfrom which to start reading

Result:

Result is a CHAR array containing the encoded Unicode data.

cData = WC_ENCODE(wcMyString, WC_FORMAT_UNI CODE, 1)

Language Reference Guide - NetLinx Programming 145

UniCode Keywords

UniCode Keywords (Cont.)

WC_FILE_CLOSE

This function closes a file opened with WC_FI LE_OPEN. This function should be called when all reading or writing to
the file is completed.
SLONG WC FI LE_CLOSE (LONG hFile)
Parameters:
* hFi | e: Handle to the file returned by WC_FI LE_OPEN.
Result:
0: Operation was successful
-1: Invalid file handle
-5: Disk I/0 error
-7: File already closed
There is a limit to the number of file handles available from the system. If files are not closed, it may not be possible
to open a file.
Result = WC_FILE_CLOSE (hFile)

WC_FILE_OPEN

This function opens a file for reading or writing.
SLONG FI LE_OPEN (CHAR FilePath[], LONG | OFl ag, LONG For mat)
Parameters:
* Fi | ePat h: String containing the path to the file to be opened
* | OFl ag:
1 Read: The file is opened with read only status. The constant FI LE_READ_ONLY is defined as a value of 1 for
specifying this flag.
2 R/W New: The file is opened with read write status. If the file currently exists, its contents are erased. The
constant FI LE_RW NEWis defined as a value of 2 for specifying this flag.
3 R/W Append: The file is opened with read write status. The current contents of the file are preserved and the
file pointer is set to point to the end of the file. The constant FI LE_RW APPEND is defined as a value of 3 for
specifying this flag.
* Fornmat:
1 Unicode The file is opened as a Unicode formatted file. If the file is opened as Read or R/W Append and the file
is a Unicode formatted file, this parameter will be set to this value by the function. The constant
WC_FORMAT_UNI CODE is defined as a value of 1 for specifying this format.
2 Unicode BE The file is opened as a Unicode BE (big Endian) formatted file. If the file is opened as Read or R/W
Append and the file is a Unicode BE formatted file, this parameter will be set to this value by the function. The
constant WC_FORMAT_UNI CODE_BE is defined as a value of 2 for specifying this format.
3 UTF-8 The file is opened as a UTF-8 formatted file. If the file is opened as Read or R/W Append and the file is a
UTF-8 formatted file, this parameter will be set to this value by the function. The constant WC_FORMAT_UTF8 is
defined as a value of 3 for specifying this format.
If the open operation is successful, this function returns a non-zero integer value representing the handle to the
file. This handle must be used in subsequent read, write, and close operations.
>0: Handle to file (open was successful)
-2: Invalid file path or name
-3: Invalid value supplied for IOFlag
-5: Disk I/0 error
-14: Maximum number of files are already open (max is 10)
-15: Invalid file format
If the file is opened successfully, it must be closed after all reading or writing is completed, by calling
WC_FI LE_CLGCSE. If files are not closed, subsequent file open operations may fail due to the limited number of file
handles available.
/1 Open MYFILE. TXT for readingl NTEGER nFor mat SLONG hFil ehFile =
WC_FI LE_OPEN(' MYFI LE. TXT', FI LE_READ_ONLY, nFor mat)
/1 nFormat will be set to detected file type

WC_FILE_READ

This function reads a block of widechar data from the specified file.
SLONG WC_FI LE_READ (LONG hFile, WDECHAR Buffer[], LONG BufLen)
Parameters:
« hFi | e: Handle to the file returned by WC_FI LE_OPEN
» Buf f er: Buffer to hold the data to be read
* Buf Len: Maximum number of characters to read
Result:
>0: The number of bytes actually read
-1: Invalid file handle
-5: Disk I/0 error
-6: Invalid parameter
-9: End-of-file reached
This function reads (from the current location of the file pointer) the number of characters specified by Buf Len (or
fewer bytes if the end of file is reached). The characters are read from the file identified by hFile and are stored in
Buffer. The file pointer will automatically be advanced the correct number of bytes so the next read operation
continues where the last operation left off.
W DECHAR wcBuf fer[1024] nBytes = WC_FI LE_READ (hFile, wcBuffer, 1024)

Language Reference Guide - NetLinx Programming 146

UniCode Keywords

UniCode Keywords (Cont.)

WC_FILE_READ_LINE

This function reads a line of widechar data from the specified file.
SLONG WC FI LE_READ LI NE (LONG hFile, WDECHAR Buffer[], LONG BufLen)
Parameters:
* hFi | e: Handle to the file returned by WC_FI LE_OPEN
» Buf f er: Buffer to hold the data to be read
* Buf Len: Maximum number of characters to read
Result:
=0: The number of bytes actually read
-1: Invalid file handle
-5: Disk I/0 error
-6: Invalid parameter (buffer length must be greater than zero)
-9: End-of-file reached
This function reads from the current location of the file pointer up to the next carriage return or to the end-of-file
(EOF), whichever comes first. A complete line will not be read if the buffer length is exceeded before a carriage
return (or EOF) is encountered. The characters are read from the file identified by hFile and are stored in Buffer. The
<CR> or <CR><LF> pair will not be stored in Buffer.
If a complete line is read, the file pointer is advanced to the next character in the file after the <CR> or <CR><LF>
pair or to the EOF if the last line was read.
W DECHAR wcBuf f er[80] nBytes = WC_FI LE READ LI NE (hFile, wcBuffer, 80)

WC_FILE_WRITE

This function writes a block of widechar data to the specified file.
SLONG WC_FI LE_WRI TE (LONG hFile, WDECHAR Buffer[], LONG BufLen)
Parameters:
* hFi | e: Handle to the file returned by WC_FI LE_OPEN.
» Buf f er: Buffer containing the data to write.
* Buf Len: Number of characters to write.
Result:
>0: The number of bytes actually written
-1: Invalid file handle
-5: Disk I/0 error
-6: Invalid parameter (buffer length must be greater than zero)
-11: Disk full. The data will overwrite or append to the current contents of the file depending on the current
position of the file pointer.
W DECHAR wcBuf f er[1024] Result = WC_FILE_ WRI TE (hFile, wcBuffer, 1024)

WC_FILE_WRITE_LINE

This function writes a line of widechar data to the specified file.
SLONG FI LE_WRI TE_LINE (LONG hFile, WDECHAR Line[], LONG LineLen)
Parameters:
* hFi | e: Handle to the file returned by WC_FI LE_OPEN.
» Li ne: Buffer containing the line of data to write.
* Li neLen: Number of characters to write.
Result:
>0: The number of bytes actually written
-1: Invalid file handle
-5: Disk I/0 error
-6: Invalid parameter (LineLen must be greater than zero)
-11: Disk full. A <CR><LF> character pair is automatically appended to the end of the line.
W DECHAR wclLine[80] Result = FILE WRI TE_LINE (hFile, wcLine, 80)

WC_FIND_STRING

This function searches through a string for a specified sequence of characters.
I NTEGER WC_FI ND_STRI NG (W DECHAR STRINF], WDECHAR Seq[], I|NTEGER Start)
Parameters:
* STRI NG The string of character to search.
* Seq: The sequence of characters to search for.
* Start: The starting character position for the search.
Result:
A 16-bit unsigned integer representing the character location of Seq in STRI NG If the character string is found at
the beginning of the string, this function returns 1; any error condition returns 0.
POS = WC_FI ND_STRINGSTRING _WC(' ABC), 1)

WC_GET_BUFFER_CHAR

This keyword removes a character from a buffer.
W DECHAR WC_GET_BUFFER_CHAR (W DECHAR A[])

The result is a W DECHAR value.

WC_CGET_BUFFER_CHAR has a two-part operation:

1. Retrieve the first character in the buffer.

2. Remove the retrieved character from the buffer and shift the remaining characters by one to fill the gap.
wchChar = GET_BUFFER_STRI NG(wcStri ng)
/1 wchChar contains first character of weString

/1 weString is now one character snaller in |ength and
/Il starts with what used to be the 2nd character

Language Reference Guide - NetLinx Programming 147

UniCode Keywords

UniCode Keywords (Cont.)

WC_GET_BUFFER_STRING

This function removes characters from a buffer.
W DECHAR WC_GET_BUFFER_STRI NG (W DECHAR A[], Length)

Length is the number of characters to remove.

Result is a W DECHAR value.

WC_GET_BUFFER_STRI NG has a two-part operation:

1. Retrieve <length> number of characters from the buffer.

2. Remove the retrieved character from the buffer and shift the remaining characters up to fill the gap.
weSubStr = CGET_BUFFER_STRI NG(wcStri ng, 3)
/1 wcSubStr contains first 3 characters of weString

/1 weString is now three characters smaller in |length and
I/ starts with what used to be the 4th character

WC_LEFT_STRING

This function returns the specified number of characters from the beginning of a string.
W DECHAR[] WC LEFT_STRI NG (W DECHAR STRINF], LONG Count)
Parameters:
* STRI NG The string from which to extract the characters.
* Count : The number of character to copy from the beginning of the string.
Result:
A string containing a copy of the first Count characters from STRI NG
WCSTRING = _WC(' ABCDEFG)wcSubstr = WC LEFT_STRING(WcSTRING, 3) // wcSubstr = ' ABC

WC_LENGTH_STRING

This function returns the length of a W DECHAR string. This function is provides the same information as
LENGTH_ARRAY (page 32).
LONG WC_LENGTH_STRI NG (W DECHAR STRING])
Parameters:
* STRI NG The input character string.
Result:
The result is the length of STRI NG The string length can be set implicitly through a literal or variable string
assignment or explicitly by calling SET_LENGTH_STRI NG
For example:
I F (WC_LENGTH_STRI NG(WwcSTRING > 0){// process string}

WC_LOWER_STRING

This function changes all alphabetic characters in the specified string to lower case using the case mapping defined
by Unicode.org.
W DECHAR[] WC_LOWER STRI NG (W DECHAR STRING])
Parameters:
* STRI NG The W DECHAR string to convert to lower case.
Result:
The result is the converted W DECHAR string.
WelLCString = WC_LOWER_STRI NG we STRI NG)

WC_MAX_LENGTH_STRING

This function returns the dimensioned length of a W DECHAR string. This function provides the same information as
MAX_LENGTH_ARRAY (page 32).
LONG WC_MAX_LENGTH_STRI NG (W DECHAR STRING])
Parameters:
¢ STRI NG The input widechar string.
Result:
The result is the dimensioned length of STRI NG
MAXLEN = WC_MAX_LENGTH_STRI NG(wcSTRI NG) Len = WC_LENGTH _STRI NG(WcSTRI NG) | F (MAXLEN >
Len){// append character to wcSTRI NG

WC_MID_STRING

This function returns the specified number of characters, starting at the specified location in the source string.
W DECHAR[] WC_M D _STRING (W DECHAR STRING], LONG Start, LONG Count)

Parameters:

* STRI NG The input character string.

e Start: Starting location in the string.

« Count : Number of characters to extract.

Result:

The result is a widechar string containing the specified characters.
WeSTRING = WC(' ABCDEFGHI JK')wcSubstr = WC_M D STRING(WecSTRING, 5, 4)// wcSubstr =
' EFGH

WC_REMOVE_STRING

This function removes characters from the specified string. All characters up to and including the first occurrence of
the specified sequence are removed.

W DECHAR]] WC_REMOVE_STRI NG (W DECHAR STRINF], WDECHAR Seq[], LONG Start)
Parameters:
* STRI NG String from which to find and remove characters.
* Seq: Sequence of characters to find.
« Start: Starting position in the string to begin search.
Result:
The result is a string containing the removed characters. If the character sequence was not found, an empty string
is returned.

WeSTRING = _WC(' ABCDEF') weSubstr = WC_REMOVE_STRI NG(WcSTRI NG, _WC('BC), 1)

/1 wcSubstr = 'ABC // wcSTRING = ' DEF'

Language Reference Guide - NetLinx Programming 148

UniCode Keywords

UniCode Keywords (Cont.)

WC_RIGHT_STRING Returns the specified number of characters from the end of a string.
W DECHAR[] WC RI GHT_STRING (W DECHAR STRING], LONG Count)
Parameters:

* STRI NG The string from which to extract the characters.
* Count : The number of character to copy from the end of the string.
Result:
The return is a string containing a copy of the last Count characters from STRI NG
WeSTRING = _WC(' ABCDEFG)wcSubstr = WC_RI GHT_STRING(WcSTRI NG, 3) // wcSubstr = 'EFG

WC_SET_LENGTH_STRING | This function sets the length of a W DECHAR string. This function provides the same functionality as
SET_LENGTH_ARRAY (page 32).
LONG WC_SET_LENGTH_STRI NG (W DECHAR STRINF], LONG Len)
Parameters:
¢ STRI NG The input widechar string.
* Len: The new string length.
WC_SET_LENGTH_STRI NG(wcSTRI NG, 10)

WC_TO_CH This keyword converts a W DECHAR array to a CHAR array.
CHAR[] WC_TO CH (W DECHAR wcSTRING 1)

Parameters:

* STRI NG The widechar string to convert to a character string.

Result:

A character string version of the widechar string.

All characters that require more than 8 bits of storage are converted to the '?' character.
cData= WC_TO CH (_WC(' Uni code'))

WC_TP_ENCODE This function encodes a W DECHAR array into a CHAR array formatted for the UNI and BAU user interface
commands.
CHAR[] WC_TP_ENCODE (W DECHAR STRING 1)
Parameters:
* STRI NG The widechar string to send to a user interface.
Result:

The result is an encoded character string.
cString = WC_TP_ENCODE(weSTRI NG) SEND_COMMAND dvTY, "' AUNI-1,0,"',cString"

WC_UPPER_STRING This function changes all alphabetic characters in the specified string to upper case using the case mapping
specified by Unicode.org.
W DECHAR[] WC_UPPER_STRI NG (W DECHAR wcSTRING 1)
Parameters:
* STRI NG The widechar string to convert to upper case.
Result:
The result is the converted widechar string.
weUCSt ri ng = WC_UPPER_STRI NG(wcSTRI NG)

Language Reference Guide - NetLinx Programming 149

Variables Keywords

Variables Keywords

Overview

NetLinx defaults non-array variables to the integer data types and defaults array variables to character data type array. The variable
must be explicitly declared if using any other data type. NetLinx provides support for several different types of variables
distinguished by attributes, such as:

e Scope

e Constancy

e Persistence

Scope

Scope is a term used in reference to program variables that describe where in the program they can be accessed. There are two
types:

e Local scope: a variable can only be accessed in the subroutine or method that it is declared.
e Global scope: a variable can be accessed anywhere in the program.

Scope differentiates the two basic classes of NetLinx variables:
e Local variable: a variable declared within a subroutine or function whose scope is limited to that subroutine or function.

e Global variable: a variable declared in the DEFI NE_VARI ABLE section; its scope extends throughout the module in which it
is declared.

Local Variables

Local variables are restricted in scope to the statement block in which they are declared. A statement block is one or more NetLinx
statements enclosed in a pair of braces, like the blocks following subroutines, functions, conditionals, loops, waits, and so on. Local
variables must be declared immediately after the opening brace of a block but before the first executable statement. To provide
compatibility with the Axcess language, local variables may be declared right before the opening brace for DEFINE_CALL
declarations only. For example, both formats shown below are legal in NetLinx:
DEFI NE_CALL ' My Subroutine' (1NTEGER | NT1)
LOCAL_VAR | NTEGER | NT2
{

(* body of subroutine *)

}

DEFI NE_CALL ' My Subroutine' (INTEGER | NT1)
{
LOCAL_VAR | NTEGER | NT2
(* body of subroutine *)
}
The scope of a local variable is restricted to the statement block in which it is declared. A local variable is either static or non-static,
depending on whether it is declared as LOCAL_VAR (page 152) or STACK_VAR (page 153).

NOTE: A static variable maintains its value throughout the execution of the program, regardless of whether it is within scope of the
current program instruction.
e The keyword LOCAL_VAR specifies a static variable. A static variable's value is initialized the first time the statement block
in which it is declared is executed and retained after execution of the statement block has finished.
e The STACK_VAR keyword specifies a non-static variable. A non-static variable's value is re-initialized every time the
statement block in which it is declared is executed.
e If neither the LOCAL_VAR nor the STACK_VAR keyword is specified, STACK_VAR is assumed (default).

IF (X > 10)

{
LOCAL_VAR | NTEGER | NT2 /1 static (permanent)
STACK_VAR CHAR ARRAY1[10] /1 non-static (tenporary)

(* statements *)

}
NOTE: Variable declarations outside of DEFINE_VARIABLE will default to STACK_VAR if neither "local” or "stack" is specified.

LOCAL_VAR and STACK_VAR can be used interchangeably in any statement block except for waits. Only LOCAL_VAR variables may
be declared inside a wait block.
WAIT 10, 'MW Wit Name'
{
LOCAL_VAR CHAR TenpBuf [80]
(* statements *)
}
A name assigned to a local variable must be unique within the statement block in which it is declared and any statement block
enclosing that block. Therefore, non-nested statement blocks can define the same local variable name without conflict. For
example:

Language Reference Guide - NetLinx Programming 150

Variables Keywords

DEFI NE_FUNCTI ON i nt eger MyFunc(| NTEGER nFl ag)

LOCAL_VAR | NTEGER n
IF (nFlag > 0)

{
LOCAL_VAR | NTEGER n /1 illegal declaration
}
}
DEFI NE_FUNCTI ON i nt eger MyFunc(| NTEGER nFl ag)
{
IF (nFlag > 0)
{
LOCAL_VAR | NTEGER n
}
el se
{
LOCAL_VAR | NTEGER n /1 legal declaration
}
}

The general form of a static local variable declaration is:
[LOCAL_VAR] [VOLATILE | PERSI STENT] [CONSTANT] [<type>] nane
The general form of the non-static local variable declaration is:
[STACK_VAR] [<type>] nane
Since non-static local variables are allocated on the program stack (a block of memory reserved for allocation of temporary
variables), the keywords VOLATILE (page 153), PERSISTENT (page 153), and CONSTANT (page 152) do not apply.

Global Variables
Global variables are defined in the DEFINE_VARIABLE (page 63) section of any program module.

For example:

DEFI NE_VARI ABLE

CONSTANT | NTEGER MAXLEN = 64

CHAR STRI MAXLEN] = 'No errors were found.'

I NTEGER ARRAY[] = {100, 200, 300}
A global variable is accessible throughout the module or program in which it is defined. Global variables retain their value as long as
the program runs. They may retain their value after powering down or reloading the system, depending on the variable's
persistence attributes (VOLATILE and PERSISTENT).

If a local variable shares the same name as a global variable, the local variable always takes precedence.
The general form of a global variable definition is:
[NON_VOLATI LE | VOLATILE | PERSI STENT] [CONSTANT] [<type>] nane [= <val ue>]

Constancy

Any variable may also be assigned the attribute CONSTANT(page 152). This declares a variable to be immutable (cannot change at
run-time). The variable must be initialized as part of its declaration if this keyword is used.

Persistence

The persistence of a variable is controlled through the NON_VOLATILE (page 153), VOLATILE (page 153), and PERSISTENT
(page 153) keywords.

Non-Volatile Variables

A variable declared with the NON_VOLATILE keyword is stored in non-volatile memory. It will retain its value in the event of a system
power-down, but is reset to zero if the program is reloaded. Unless specified otherwise, all variables are stored in non-volatile
memory.

Volatile Variables

A variable declared with the VOLATI LE keyword is stored in volatile memory and resets to zero after either a power-down or reload.
Volatile memory is generally faster and more plentiful than non-volatile memory. For this reason, you should use the VOLATILE
keyword when declaring large data arrays where persistence of the data is not a requirement.

Persistent Variables

If a variable is declared with the PERSISTENT keyword, it is initialized to zero the first time the program is loaded but will retain its
value after either power-down or reload. If the data type is omitted from the variable definition, the following defaults are assumed:

e Single variables are PERSISTENT type.
e Arrays are CHAR type.

Language Reference Guide - NetLinx Programming 151

Variables Keywords

You can define a variable to be persistent using the PERSISTENT storage modifier as shown below:
DEFI NE_VARI ABLE
PERSI STENT CHAR cMyStri ng[100]

All persistent variables are automatically non-volatile, and it’s not legal to define a variable as VOLATILE and PERSISTENT. Any time
after a NetLinx program that has a persistent variable declared subsequent downloads of new NetLinx programs that contain the
same persistent variable will automatically be set to contain the same value as it previously did. By default, non-persistent variables
are set to zero after a NetLinx program downloads. Persistence overrides this behavior by setting the variable in the newly
downloaded program to be the same as it was before the download.
Typically, persistent variables are used for saving preset information. Suppose you have a system that contains several PosiTrack
camera positioning systems and that the user interface to the system allows the user to set the position of any of the cameras and
record that position for recalling later. The position presets are stored in a non-volatile array variable so they are maintained during
a power cycle. Without persistent variables, an update to the NetLinx program would zero out all of the presets that the user had
stored. With persistent variables, the new NetLinx program can be downloaded and all of the presets remain intact.
When a new NetLinx program is downloaded to the Master, the Master iterates through all non-volatile variables from the new
program looking for persistent ones. When it finds a persistent variable in the new program, it searches the old programs persistent
variable space for the "same variable". When it finds the same variable, the value of the new variable is set to the same value as the
old programs variable. It is important to note what is considered to be the "same variable".
The master identifies the "same variable" by verifying for duplicity the following:

e Variable name

e Variable source location

e Variable type
Therefore, in order for persistence to function properly, the name, type, and file declared in must be the same as the previously
downloaded NetLinx program. If you changed any of the three, the new persistent variable will not be set with the old variable’s
value.

Constants
Constants are defined in the DEFINE_CONSTANT (page 61) section.

Variables Keywords
The NetLinx programming language supports the following Variables keywords:

Variables Keywords
ABS_VALUE ABS_VALUE provides the absolute value of a variable. It will take any intrinsic variable type and return the same type.
AbsVal ABS_VALUE (Val ue)

DEFI NE_VARI ABLE
SLONG Var 1, Var2

DEFI NE_START
Varl = -1
DEFI NE_PROGRAM
Var2 = ABS_VALUE(Var 1) /'l Var2 =1
CONSTANT This keyword is used as part of a variable declaration to specify that the variable cannot be changed at run-time. If a

variable is declared with this keyword, it must be initialized in its declaration.

LOCAL_VAR This keyword specifies a variable that is static. To provide compatibility with the Axcess language, local variables may be
declared right before the opening brace for DEFI NE_CALL declarations only. If neither the LOCAL_VAR nor the
STACK_VAR keyword is specified, STACK_VAR s assumed.

See the Variables - Overview on page 9 for more information.

MAX_VALUE Provides the value of the highest of two variables. It will take any intrinsic variable type and return the same type of the
highest variable.

MaxVal MAX_VALUE (Var 1, Var 2)

DEFI NE_VARI ABLE

SLONG Var 1, Var2, VarMax

DEFI NE_START

Varl = 100

Var2 = 200

DEFI NE_PROGRAM

Var Max = MAX_VALUE (Var1, Var2) /1 VarMax = 200

MIN_VALUE Provides the value of the lowest of two variables.
It will take any intrinsic variable type and return the same type of the lowest variable.
M nVal M N_VALUE (Var1, Var 2)
DEFI NE_VARI ABLE
SLONG Var1, Var2, VarMn
DEFI NE_START
Varl = 100
Var2 = 200
DEFI NE_PROGRAM
VarMn = M N_VALUE (Var1, Var2) /1 VarMn = 100

Language Reference Guide - NetLinx Programming 152

Variables Keywords

Variables Keywords (Cont.)

NON_VOLATILE A variable declared with the NON_VOLATI LE keyword is stored in non-volatile memory. It retains its value in the event of a
system power-down, but is reset to zero if the program is reloaded. Unless specified otherwise, all variables are stored in
non-volatile memory.

OFF See page 37
ON See page 37
PERSISTENT If a variable is declared with the PERSI STENT keyword, it is initialized to zero the first time the program is loaded but will

retain its value after power-down or reload.

* The PERSI STENT attribute does not apply to non-static local variables, since non-static local variables are allocated
on the program stack (a block of memory reserved for allocation of temporary variables).

* The PERSI STENT attribute does not apply to the individual members of a structure.

RANDOM_NUMBER This function returns a random number X in the range 0 <= X < Max.
LONG RANDOM NUVBER (LONG Max)
Parameters:
* Max: An unsigned long integer (must be greater than zero) that will serve as the upper limit for the random number
generator.
The result is an unsigned long integer >= 0 and < Max.
Num = RANDOM NUMBER(1000) // 0 <= Num < 1000

STACK_VAR This keyword specifies a non-static variable.

A non-static variable's value is re-initialized every time the statement block in which it is declared is executed. References
to STACK_VAR variables are not allowed within waits. STACK_VARs are temporary variables that cease to exist when the
block in which they are declared is exited. If neither the LOCAL_VAR nor the STACK_VAR keyword is specified,
STACK_VARIs assumed.

TOTAL_OFF See page 37.

TYPE_CAST This routine eliminates compiler type cast warnings by casting the passed intrinsic variable type to the type assigned by
the return value.
IntrinsicVariabl eNewType TYPE_CAST (IntrinsicVariabl eType)

It is possible to eliminate the compiler warnings related to type casting. The TYPE_CAST library function converts any
non-array intrinsic type to any other non-array intrinsic type. The type conversion still happens and follows the standard
Type Conversion Rules, but any warnings related to the type cast are eliminated. Type casting causes potential loss of data
when a variable or constant is assigned to a variable of smaller type.

VOLATILE This keyword is used as part of a variable declaration to specify that storage space for the variable be allocated in volatile
memory. Variables stored in volatile memory are not retained when the system is powered-down, as are variables stored in
non-volatile memory. The trade-off is that volatile memory is generally more plentiful and therefore a good choice for
storing large data arrays.

Language Reference Guide - NetLinx Programming 153

Wait Keywords

Wait Keywords

Overview

Wait instructions allow delayed execution of one or more program statements. When a wait statement is executed, it is added to a
list of currently active wait requests and the program continues running.

Types of Waits
Types of Wait statements include:

o Timed Waits have an associated parameter that indicates the amount of time that must elapse before the associated wait
instruction(s) are to be executed. See page 155.

e Conditional Waits require that a specified condition be met before the instructions are executed. See page 155.

e Timed Conditional Waits have a timeout parameter; if the condition is not met before the specified time elapses, the wait
request is canceled. See page 155.

Naming Waits

Supplying a unique name in the wait statement allows the wait to be identified for purposes of canceling, pausing, or restarting the
wait request. The name must not conflict with previously defined constants, variables, buffers, subroutines, or functions. Unlike
other NetLinx identifiers, wait names may contain spaces. If a wait instruction that uses a name currently in the wait list is
encountered, the new wait instruction is thrown away so as not to conflict with the one currently in progress. If this feature is not
desired, the current wait must be canceled before processing the new request.

Nesting Waits

The wait time for a nested wait is the sum of it's own wait time, plus that of the enclosing waits. In the example below, SECOND
WAIT occurs 0.5 seconds after FIRST WAIT is executed, or 1.5 seconds after FIRST WAIT is added to the wait list.
WAIT 10 ' FIRST WAI T'

{
(* FIRST WAIT statenents *)
WAIT 5 ' SECOND WAI T'
{
(* SECOND WAIT statenents *)
}
}

To execute the inner wait of a nested conditional wait, the conditions must be met in the order specified (condition 1, then
condition 2) but not necessarily at the same time.
WAI T_UNTI L <condition 1> ' FIRST WAI T

{
(* FIRST WAIT statenents *)
WAI T_UNTI L <condition 2> 'SECOND WAI T'
{
(* SECOND WAIT statenents *)
}
}

Using Waits - Limitations
e References to STACK_VAR variables are not allowed within waits (STACK_VAR are temporary variables that cease to exist
when the block in which they are declared is exited).
Variable copies are made of functions and subroutine parameters. This can have speed/execution penalties.
A RETURN is not allowed within a WAIT within functions and subroutines.
A BREAK or CONTINUE cannot appear within a WAIT if it takes execution out of the scope of the WAIT.
The code within a WAIT cannot reference a function or subroutine array parameter whose bounds are unspecified.

WAIT keywords

The NetLinx programming language supports the following WAI T keywords:

WAIT Keywords

CANCEL_ALL_WAIT This keyword cancels all WAl Ts (named or unnamed) from the appropriate Wait list.
Syntax
CANCEL_ALL_WAI T
CANCEL_ALL_WAIT_UNTIL | This keyword cancels all WAl T_UNTI Ls and TI MED_WAI T_UNTI Ls (named or unnamed) from the appropriate Wait
list.

Syntax:
CANCEL_ALL_WAI T_UNTI L

CANCEL_WAIT This keyword removes the wait specified by name from the appropriate wait list.

Syntax:
CANCEL_WAI'T ' <wait name>

Language Reference Guide - NetLinx Programming 154

WAIT Keywords (Cont.)
CANCEL_WAIT_UNTIL

Wait Keywords

This keyword cancels a specified WAI T_UNTI L or TI MED_WAI T_UNTI L. Only named WAI T_UNTI L and named
TI MED_WAI T_UNTI L commands can be canceled.
Syntax:

CANCEL_WAI T_UNTIL '<wait nane>'

PAUSE_ALL_WAIT

This keyword suspends all WAI Ts currently in effect.
Syntax:
PAUSE_ALL_WAI'T

PAUSE_ALL_WAI T is used to pause all scheduled waits, regardless of whether or not they are named. They have no
parameters.

PAUSE_WAIT

Puts a scheduled wait on hold. The wait being paused is identified by the parameter name. The wait timer stops
counting down until it is resumed with a RESTART_WAI T command.
Syntax:

PAUSE WAI T ' <wai t name>'

This keyword suspends the specified (named) WAI T until a RESTART_WAI T, RESTART_ALL_WAI T, CANCEL_WAI T,
or CANCEL_ALL_WAI T command is issued.

RESTART_ALL_WAIT

This command resumes all waits that were previously paused. This includes both named and unnamed waits.
Syntax:
RESTART_ALL_WAI T

RESTART_WAIT

RESTART_WAI T resumes the countdown for a wait suspended with PAUSE_WAI T. The wait to be restarted is
identified by the parameter name.
Syntax:

RESTART_WAI T ' <nanme>'

WAIT

This keyword delays execution of one or more statements for a specified period of time.
Syntax:
VWAIT time ['<nane>']
{
(* wait statenents *)
}
Parameters:
* tine: A constant or variable indicating the wait time. Time is expressed in 1/10th second units. The statement
below specifies a wait time of 5 seconds for the wait named FI RST WAI T.
* <nane>: The name to assign to the wait. This name must be a literal string. The wait name is optional, although
unless a wait is named it cannot be individually canceled, paused, or restarted.
If greater precision is required, the time parameter can be expressed as a decimal fraction, for example 0.1 to
specify a wait time of 1/100th of a second. The range is 0.1 to 0.9.
WAIT 50 ' FIRST WVAI T'
{
(* wait statenents *)

}

WAIT_UNTIL

This is a conditional Wait request. This keyword is used to delay execution of one or more statements until a
specified condition is met.

Syntax:
WAI T_UNTI L <condition> ['<nanme>']
{
(* wait statenments *)
}
Parameters:

* <condition>: Any single or compound expression that can be evaluated as a logical expression. The Wait
statements are executed if and when the wait condition becomes True.

* <name>: The name to assign to the Wait. This name must be a literal string. The Wait name is optional, although
unless a Wait is named it cannot be individually canceled, paused, or restarted.

TIMED_WAIT_UNTIL

This is a Timed Conditional Wait request. This keyword delays execution of one or more statements until a particular
condition is met. It is similar to WAl T_UNTI L except that this instruction provides for a timeout parameter to be
specified.

Syntax:
TIMED_WAI T_UNTI L <condition> tinmeout ['<nane>']
{
(* wait statenments *)
}
Parameters:

* <condi ti on>: Any single or compound expression that can be evaluated as a logical expression. The Wait
statements are executed if and when the Wait condition becomes true.

* tineout: A constant or variable indicating the timeout value in 1/10th seconds. If the Wait condition is not met
within the time indicated by this parameter, the Wait is canceled, in which case no wait statements are executed.

* <nane>: The name to assign to the Wait. This name must be a literal string. The Wait name is optional, although
unless a Wait is named it cannot be individually canceled, paused, or restarted.

Language Reference Guide - NetLinx Programming 155

Appendix A - Compiler Warning & Errors

Appendix A - Compiler Warning & Errors

Compiler Warnings

Sometimes the compiler generates a

e A warning about a particular
doing it.

warning message instead of an error message; these warning messages always start with w.
statement means that the statement is not technically an error, but you should be careful

e \Warnings, unlike errors, do not stop the program from compiling.

Compiler Warnings

(w) Cannot assign unlike types

This warning occurs when a variable or value of one type is assigned to a variable of a different

type. Here are some examples:

* Assigning a string literal, string expression, or array to a non-array variable

« Assigning a non-array variable to an entire array

* Assigning an integer array to a non-integer array

« Assigning a two-dimensional array to a one-dimensional array, or vice versa

* Assigning the result of a function that returns an array type to a non-array variable or to a two-
dimensional array variable (for example, X = ITOA(12), where X is a non-array variable or two-
dimensional array variable)

* Assigning the result of a function that returns a non-array type to a one- or two-dimensional
array variable (for example, X = ATOI('AMX'), where X is a one- or two-dimensional array
variable)

This message is a warning and not an error, because X = ITOA(12) works correctly when X is a

simple variable, since the result is a single value between @ and 65,535.

(w) DEFINE_CALL is not used

This warning occurs at the end of program compilation for each DEFINE_CALL (page 58)
subroutine that was declared but never used.

(w) Integer applies to arrays only

This warning appears when the keyword INTEGER (page 55) is applied to a non-array type of
variable. Doing this is not an error, because non-array variables are already integers, but it is
redundant.

(w) Long_While within While

This warning occurs if the compiler finds a LONG_WHI LE (page 53) or MEDI UM WHI LE (page 53)
inside a block of code following a WHI LE (page 53) keyword. This warning exists because the
WHI LE command has a 1/2 second timeout period, and the LONG_WHI LE and MEDI UM WHI LE
keywords do not. This could create a hard-to-find logic error.

The solution is to change the WHILE to a LONG_WHILE.

(w) Possibly too many nested levels

This warning appears if there is a large amount of nesting in the program. This can happen with a
long chain of IF...ELSE IF statements (page 47).
The solution is to use the SELECT...ACTIVE (page 47) set of statements.

(w) Variable is not used

This warning occurs at the end of compilation for each variable that was declared but never used.

Compiler Errors

The compiler informs you when it finds an error during the compilation process. Most of the time these errors occur due to a
typographical error or incorrect syntax of a particular command. Unlike warnings, errors must be corrected before your NetLinx

program can be executed.

Compiler Errors

A "<symbol>" was expected

The compiler is expecting a certain symbol at this particular place.

ACTIVE keyword expected

An ACTIVE keyword is not present after a SELECT (page 52) keyword.

Allowed only in DEFINE_START

A keyword that is only allowed to appear in the DEFINE_START (page 62) section of the
program was encountered elsewhere.

Attempted CALL to undefined
subroutine

A CALL statement refers to a subroutine that has not been defined with a DEFINE_CALL
(page 61) statement.

Comment never ends, EOF encountered | A comment begins but never ends. Place a close comment, *) at the end of the unfinished

comment.

Conditional compile nesting too deep

There are too many nested #IF_DEFINED (page 29) or #IF_NOT_DEFINED (page 29)
conditional compilation statements. The limit is 20 nested conditional compilation statements.

Constant type not allowed

A constant value was declared as latching, toggling, or mutually exclusive, as shown below:
DEFI NE_CONSTANT
PLAY = 1
DEFI NE_LATCHI NG
PLAY (* Error: PLAY is a constant *)

DEFINE_CALL must have a name

DEFINE_CALL (page 61) must have a name after it. For example,
DEFI NE_CALL ' VHS' .

Language Reference Guide - NetLinx Programming

156

Compiler Errors (Cont.)
DEFINE_CALL name already used

Appendix A - Compiler Warning & Errors

The name of the DEFINE_CALL (page 61) has already been used. This name cannot be the
same as an already declared identifier of any type.

Device values must be equal

In a range specification, the devices (or their defined identifiers) must be equal. For example,
([1,1]..[1,5]) is valid; ([1,1]..[2,5]) is not.

Duplicate symbol

Duplicate definitions of variables or constants are found. All variables and constants must have
unique identifiers.

Evaluation stack overflow

The expression is too complicated. Try breaking it up into smaller pieces.

Evaluation stack underflow

The expression is too complicated. Try breaking it up into smaller pieces.

Identifier expected

The compiler is expecting an identifier after a #DEFINE (page 29) statement or after an integer
declaration in the DEFINE_VARIABLE (page 63) section.

Identifier is not an array type

A non-array variable was treated as an array.

Include file not found

An INCLUDE (page 52) statement was encountered, but the specified include file could not be
found.

Invalid include file name

A string literal enclosed in single quotes must follow the INCLUDE (page 52) keyword.

Library file not found

The library file containing the specified SYSTEM_CALL (page 28) could not be found.

Maximum string length exceeded

String literals are limited in length to 132 characters, including spaces.

Must be char array reference

An array type variable was expected in CREATE_BUFFER (page 35), CREATE_MULTI_BUFFER
(page 35), or CLEAR_BUFFER (page 35.

Must be integer reference

The identifier in question must be an integer. This error occurs when the third parameter of
CREATE_LEVEL (page 102) is an array or array element.

Out of memory

The compiler has run out of memory. Free up memory either by removing any pop-up programs
or drivers, by using extended memory, or by breaking your program into one or more Include
files.

Parameter mismatch in CALL

A value or variable passed to a CALL (page 28) as a parameter is of the wrong type as defined
by the DEFINE_CALL (page 61) statement.

PROGRAM_NAME must be on line 1

Move the PROGRAM_NAME= (page 63) statement to the first line of the program.

Push/Release not allowed within Push/
Release

A PUSH (page 120) or RELEASE (page 120) statement was found within a block of code headed
by a PUSH or RELEASE statement.

Push/Release not allowed within Wait

These keywords are not allowed in a section of code which will be executed due to a WAIT
(page 155) keyword.

PUSH_CHANNEL not allowed within
Wait

These keywords are not allowed in a section of code which will be executed due to a WAIT
(page 155) keyword.

RELEASE_CHANNEL not allowed within
Wait

These keywords are not allowed in a section of code which will be executed due to a WAIT
(page 155) keyword.

PUSH_DEVICE not allowed within Wait

These keywords are not allowed in a section of code which will be executed due to a WAIT
(page 155) keyword.

RELEASE_DEVICE not allowed within
Wait

These keywords are not allowed in a section of code which will be executed due to a WAIT
(page 155) keyword.

String constant expected

A string is required for the particular operation. This error occurs if a string literal enclosed in
single quotes does not follow the PROGRAM_NAME (page 63) keyword.

String constant never ends, EOF
encountered

A string literal is started but never ends. Add a closing single quotation mark (') to the end of
the string.

String literal expected

A string is required for the particular operation. This error occurs if a string literal enclosed in
single quotes does not follow the #WARN (page 29) keyword.

Subroutine may not call itself

A subroutine (page 26) cannot call itself. It can, however, call a different subroutine.

Syntax error

A syntax error is found in an expression. In most cases, this error means that a character is out
of place or something is misspelled.

SYSTEM_CALL name not same as
PROGRAM_NAME in <file>

This error occurs when a library file is compiled and the name of the subroutine in the library
file does not match the PROGRAM_NAME (page 63) string on the first line of the file.

This variable type not allowed

This error occurs when an attempt is made to use an array variable with DEFINE_LATCHING
(page 62), DEFINE_TOGGLING (page 62), or DEFINE_MUTUALLY_EXCLUSIVE (page 62).

Language Reference Guide - NetLinx Programming

157

Appendix A - Compiler Warning & Errors

Compiler Errors (Cont.)

TO statements that occur outside the
data flow of PUSH events/statements
may not work

TO is valid:

* Under a PUSH (page 120) statement

* Under a BUTTON_EVENT/PUSH handler (see page 81)

¢ Under a BUTTON_EVENT/HOLD handler (see page 81)

* Ina DEFINE_FUNCTION (page 62) or DEFINE_CALL (page 61) that gets invoked in one of
the areas above.

< In this case, the function or call could be potentially be invoked anywhere in the program.

It is an intractable problem to check for misplacement of <any possible function name> and

<any possible call name>, so TO’s outside of PUSH’s will not generate an error, just a warning.

NOTE: This all applies to MIN_TO (page 120) also.

Too few parameters in CALL

There are not enough parameters being passed to the subroutine.

Too many include files

In NetLinx, the number of Include files allowed is limited only by the amount of memory
available on the PC at compile time.

Too many parameters in CALL

There are too many parameters being passed to the subroutine.

Type mismatch in function CALL

A function was called with a parameter of the wrong type. For instance, attempting to use ITOA
(page 51) with an array as a parameter will result in an error.

Undefined identifier

An attempt was made to reference an identifier that has not been defined previously in the
program.

Unmatched #END_IF

An #END_IF (page 29) keyword was found, but no #IF_DEFINED (page 29) or
#IF_NOT_DEFINED (page 29) was previously compiled.

Unrecognized character in input file

An invalid character was found during the build.

Use SYSTEM_CALL [instance] 'name’

This error occurs if a SYSTEM_CALL (page 16) statement is written incorrectly as:
SYSTEM CALL ' NAME' [| NSTANCE NUMBER] .

Variable assignment not allowed here

Variables may not be assigned a value when they are defined in the DEFINE_VARIABLE
(page 63) section.

Wait not found

A statement references a WAIT (page 155) by a name that does not exist. For example,
CANCEL_WAIT 'CASS' will produce this error if there is no WAIT named CASS.

Run-Time Errors

In many cases, a program is compiled and sent to the Central Controller error-free, but the system does not act in the way it
should. If the program code is correct, you should check for run-time errors. These errors occur in the Central Controller, usually
when it could not perform a particular operation in the program.

Run-Time Errors

Bad assign 2dim...

These errors occur if an attempt is made to assign a two-dimensional array to a different type
(such as a variable or one-dimensional array), and vice versa.

Bad assign Call...

These errors occur if the Central Controller cannot assign a parameter in a CALL (page 16)
statement to the parameter in the corresponding DEFINE_CALL (page 16) statement.

Bad element assign...

These errors occur if an assignment is attempted past the end of an array, or to the @ location
of an array (for example, ARRAY[@]).

Bad Off... Bad On... Bad To...

These errors indicate that the device-channel or variable that is being referenced by an OFF,
ON, or TO keyword is out of range.

Bad re-assign Call...

These errors occur when the Central Controller attempts to re-assign the parameter variables
in a DEFINE_CALL (page 16) to the parameters in the corresponding CALL (page 16)
statement, and the assignment cannot be made.

Bad run token

This error occurs when the Central Controller does not understand a piece of data in the
program it is executing.

Bad Set_Length...

These errors occur if the SET_LENGTH_STRING (page 149) keyword tries to set the length
value of an array to a value greater than the array's storage capacity.

Bad While

This error occurs whenever a WHILE (page 48) loop terminates due to the half-second timeout
imposed on WHILE loops.

Language Reference Guide - NetLinx Programming

158

Appendix B - Master-To-Master (M2M)

Appendix B - Master-To-Master (M2M)

Overview

This section explains the concept of Master-to-Master ("M2M") systems, and provides the information that must be understood to
successfully deploy M2M systems. Most M2M systems can be successfully deployed using "route mode direct" and the appropriate
topology. These two items are explained in detail in the subsections "Master routing" (page 159) and "Topologies" (page 162).

Master-to-Master

The functionality of M2M consists of master routing and inter-system control. Master routing is the ability to route messages to any
other master or device and is the foundation of all M2M functionality. Inter-system control allows a master, or its NetLinx program,
to control and get status of any other device (or master) that is connected to any other master. FIG. 7 depicts a typical system of
two interconnected NetLinx control systems with several devices connected to each one:

. 7 10/100Mb——+,
Physical Connection Ethernet Backbone i
..mnODMb—-el
|| wime [vimamo]
10/100M |
.y -
_ =
B | |_MV;84EBL_] [“nistoo !
| Device #10001 Davice #5001 |
| Pos#1-100 | | Pors#1-17
| | | CMSEEORR e
\
10/100Mb
Envvstc | |
Device #128 PC connecting
Port #1] [To System #7 w
System #1 1 ‘ % NetLinx Studio
— — — Device # 32002
____________ R .
Logical Connection | {]
\
= !
‘ N
| — o s e O
| NI-700 [Device #10001 Device # 5001
| D::“ice;tsogl | | Psurls#I‘;Q,O | Pots#1-17
S = temn
‘ L System # 1 | { [ttt L _Syiemf _|
[

‘ I B Env-VST-C ﬂ
LS| Device #128 PC connecting
- AN Port #1][To System #7 w
SENEN system#1 1[NetLinx Studio
P — ‘ % Device # 32002

FIG. 7 Two Interconnected Netlinx Control Systems

The top portion of the illustration in FIG. 7 shows the physical connections and the devices represented. The bottom portion shows
the logical connections that have been assigned. In this example the NI-3100 will not communicate with the ENV-VST-C unless
defined in the DEFI NE_DEVI CE section of its program code running on NI-3100 using the appropriate system number, for example
128:1:1. The first port on the MVP-8400i could be defined on system 1 using 10001:1:7, and on system 7 using 10001:1:7 or
10001:1:0.

Master Routing

By design, all NetLinx masters do not automatically make a M2M connection with other NetLinx masters by virtue of being on the
same network. The connection between them must be made intentionally by adding them to a list. This connection list is called the
"URL List". The URL List on the NetLinx master is used to force the master to initiate a TCP connection to the specified URL/IP
address.
Any TCP/IP device, including NetLinx masters, which utilize DHCP to obtain its TCP/IP configuration, are subject to having their IP
address change at any time. Therefore, NetLinx master's IP address must be static unless the network supports Dynamic DNS AND
a DHCP server capable of updating the DNS tables on behalf of the DHCP client. If a Dynamic DNS/DHCP server is available then the
NetLinx master's host name may be used in the URL List. Therefore, the first step in assembling a M2M system is to set unique
system numbers on each master.

e Valid system numbers are 1 - 65535

e System 0 is a wildcard referring to the local system and is used within DEFI NE_DEVI CE and NetLinx Studio connections

Language Reference Guide - NetLinx Programming 159

Appendix B - Master-To-Master (M2M)

The next step is to configure the URL List in either of the masters, but not both, to point to the other master. For example, in
Illustration 1 NetLinx master system #1 could have its URL List configured with a single entry that contains the IP address of the
NetLinx master system #7; this will establish a two-way connection.

The system #7 master does not need to have a URL entry to communicate with system #1. If the system #7 master's URL List does
contain the IP address for system #1 a routing loop will be created which will lead to problems (FIG. 8).

OK OK WRONG
System Number System Number System Number
= @] =] 3 © @ @
5 2 2 w 2 2 u 2 g
(T T 1] 1] T T
5 s s 5 s s 5 s s
1 7z 1 1 1 7 1

FIG. 8 Master Routing

Once the systems are connected to each other they exchange routing information such that each master will learn about all the
masters connected to each other. The implementation of master routing primarily involves the communication of routing tables
between masters. The routing table is built using the entries within the local URL List, the DPS entries in the DEFI NE_DEVI CE
section of the code, and from the routing tables exchanged between connected masters. Routing tables are exchanged between
masters upon their initial connection and updates to the routing tables are exchanged periodically. Route table transmission has a
certain amount of randomization built in to prevent flooding the network with routing table transmissions when a master reports
online/offline. Each master in a network will add a minor random delay (1-5 seconds) so that they don't all transmit at the same
time.

There is no fixed limit on the number of entries in a routing table. The number of routes is dependent on the number of systems in
the network for which there is no set limit. The only limit is the memory space in each master to maintain all of the system
information of the various systems throughout the network.

Route Modes (Normal and Direct)

There are two route modes in which masters can be configured to share their routing table. The first and default is "normal", in this
mode the master will share the entire routing table built from all interconnected masters. The second is "direct"; in this mode the
master will share a routing table that only contains itself. When using "direct" mode the master will only connect with the masters
that are one hop away.As a diagnostic aid, the "show route" command can be issued from a telnet session to show paths to other
masters. Consider the following system of interconnected NetLinx masters (FIG. 9):

NetLinx Master
System #1
192.168.12.105
v
NetLinx Master NetLinx Master
Systemn #2 Systern #3
192.168.12.76 192.168.12.93

A
MetLinx Master NetLinx Master NetLinx Master
Systern #5 ot Systern #106 System #1111
192168.12.79 192.168.12.106 192.168.12.111
v
NetLinx Master
System #4
192.168.12.80

FIG. 9 Master Routing (in a system of interconnected NetLinx masters)

In FIG. 9, arrows depict the direction of the initiated connection. I.e. System #1 initiated the connection to System #2 by having the
IP address of System #2 in its URL List. The following sample output is from a Telnet session connected to System #5. The
connection of the NetLinx system is depicted in Illustration 2.

>show route
Rout e Dat a:
System Route Metric PhyAddress

1 2 2 TCP Socket =18 | P=192. 168. 12. 76 | ndex=3

2 2 1 TCP Socket =18 1 P=192. 168. 12. 76 | ndex=3

3 2 2 TCP Socket=18 | P=192. 168. 12. 76 | ndex=3

4 4 1 TCP Socket =16 | P=192.168. 12. 80 | ndex=1
->5 5 0 Axl i nk

106 106 1 TCP Socket=19 | P=192. 168. 12. 106 | ndex=2

111 106 2 TCP Socket=19 |P=192. 168. 12. 106 | ndex=2

Language Reference Guide - NetLinx Programming 160

Appendix B - Master-To-Master (M2M)

* Route Data: The “Route Data:” indicates which routing mode the master is using. When the master is configured for
route mode “normal”, nothing additional will be presented. When the master is configured for route mode
“direct”, the following note will appear. “Direct Connect Only Mode”

o > The "->" to the left of system number 5 indicates that system number 5 is the local system (i.e. the system

that the telnet session is connected to).

System column:

The System column lists all of the systems that are in the master’s routing table.

Route column:

The Route column indicates which system number packets are to be routed to in order to get to their
destination. For example, to send a message from system #5 to system #1 the message must be sent to/
through system #2. You can see this visually in FIG. 9, or by examining the Route entry for System #1 in the
"show route" table.

Metric column:

The Metric column indicates the number of system masters that the message must transverse/hop in order
to get to its destination. For the example above, the metric is 2 because the message must enter system #2,
then system #1. Note that a metric of 16 or “Dead” indicates a route that is expected but does not exist.
Further, since the maximum usable metric is 15 there is a limit of 16 masters in the width plus height of the
master topology (see the Design Considerations, Constraints, and Topologies section on page 162).

PhyAddress column:

The PhyAddress column indicates the internal connection parameters used by the master to maintain the

connection information.

* “TCP Socket=" - This is the IP socket that is used for this connection. Refer to “show TCP” for additional
information.

e “IP=" - This is the IP address of the masters used for this connection point.

« “Index=" - This is the order in which the connection was established. When the master contains the
entry in its URL List this often represents the order they were entered into the list.

"Show Rout e" supports the "/ v", verbose, parameter which will enable additional information about the routing table. This
information is typically meaningful only to firmware engineering when diagnosing issues involving route table transmissions. The
additional information available is described as:

Current Time:

The number of milliseconds since boot.

Update Time:

The milliseconds since boot when the next route table sync will occur.

Normal Update Time:

The milliseconds since boot when the next route table sync will occur.

Triggered Update Time: | The last time a triggered update occurred (ex. a new master came online, forcing a table update). If no

triggered update has occurred, the field will say Max Time (effectively -1)

Timeout Time:

The time that the next route table sync should have occurred by.

Next Update:

« “Normal” This indicates the next update will occur at the “Normal Update Time”
* “Triggered” indicates the next update is occurring due to a triggered event.

Flags column:

The Flags column indicates if the route to that master has “changed” during the last route reporting
cycle. Upon the next reporting cycle with no new change, the field will be empty.

The end result of all this routing and connection data is that a device or master can communicate with other devices or masters
regardless of the physical connection of the device. Note that masters may only be "connected" to each other via Ethernet/TCP/IP.
As an example (see FIG. 7 on page 159), NetLinx Studio is running on a PC that is connected to System #7 as device number
32002. The routing capabilities of the NetLinx master allow NetLinx Studio to download IR codes to the NXC-IRS4 (S=7 D=24),
download a master firmware upgrade to NetLinx master #1, and download new touch panel pages to the touch panel on master #1.
All of this is possible simply by having NetLinx Studio connected to a NetLinx master with M2M firmware.

Language Reference Guide - NetLinx Programming 161

Appendix B - Master-To-Master (M2M)

Design Considerations, Constraints, and Topologies

Design Considerations

When designing a system that will utilize the M2M functionality, there are multiple points to consider. The first thing to consider is

the reason for using M2M. The most common reasons are:
e Expansion of a system to add device ports.

Expansion of a system to an area the main system cannot reach.

Sharing of processing load.

Standalone capability of system areas.

Isolation of areas for security reasons.

Dedicate a master to common/shared devices located in a central location.
e Etc... a combination of the above.

The second thing to consider is the code requirements for each master:

e Masters that are only being used to add device ports must have an empty ".tkn" file loaded, otherwise the devices will not
be accessible.

e Masters that are used to share the processing load or are intended to provide standalone capability must define its local
devices and the specific remote devices needed on the other masters in DEFINE_DEVICE.

e Ports on remote devices declared in DEFINE_DEVICE must exist! For example, adding touch panel port 80 when the panel
file that has been loaded only specifies 20 will cause errors in the negotiation.

e Events must be written for remote devices for the program to hear them. Writing events causes the master to negotiate for
the transmission of these events over M2M (as reflected in SHOW NOTIFY)

The third thing to consider is the connection topology:
e Is there a main master who all other masters must connect with?
e Do all the masters need to talk to each other?
e Or is there some combination of the above?

Constraints
To properly configure the URL Lists in a multi-master system, there must be an understanding of 3 hard constraints.

1. The first constraint is the maximum number of 200 entries in a URL List. This limit although important will most likely never
pertain as the second constraint is far more relevant.

2. The second constraint is the maximum number of 250 simultaneous TCP/IP connections supported by a single master. The
maximum number of simultaneous TCP/IP ICSP (NetLinx device) connections supported by a single master is 200. The top
~25 of the remaining 50 are intended to be used for internal services i.e. ftp, telnet, http, etc... The next 25 are intended to be
used for IP connections used in the NetLinx code via IP_CLIENT_OPEN, IP_SERVER_OPEN, and Duet modules.

If there are more than 25 IP connections made from within the code they will utilize the required number of remaining 200 IP

sockets which reduces the number of available socket connections and subsequently the number of available NetLinx device
connections which will reduce the number of available entries within the URL List.

3. The third constraint is the routing metric limit of 15 usable hops on the topology of the interconnected NetLinx masters. While

the limit of 15 hops may seem very limiting, this is not really the case if you carefully design the topology. FIG. 10 provides a
visual of the 15 hop limit:

T e 2 e I A e T O O 12 1 2 14 15 g 16
Y T P S i S (Y P (S N S o g g
FIG. 10 15-Hop Limit
Chain Topology

This topology shows 16 masters connected to each other such that any master is routeable to any other master.
The URL Lists would be configured like this:

System Number

Master 9

Master 11
Master 12
Master 13
Master 14
Master 15
Master 16

~| URL Entry
N | Master 1
w | Master 2
B | Master 3
o1 [Master 4
o | Master 5
~ | Master 6
© | Master 7
© [Master 8
—| Master 10

—_
o
—_
-
N
—_
w
—_
I
—_
w
—_
(o3}

NOTE: The system number is being used here for readability, the actual URL/IP address must be entered into the URL List.

Using this topology can be both network and processor intensive as a message from system 1 to a device/port on system 16 must
be passed between the 14 masters. For example, a serial string sent from within the code on system 1 to 5001:1:16 will be passed

to system 2, and then to 3, etc. until it reaches system 16. Therefore the single serial string results in 15 messages across the
network.

Language Reference Guide - NetLinx Programming 162

Appendix B - Master-To-Master (M2M)

With an I0 pulse from system 1 to a port on system 16 the following occurs; an ON message is passed to system 2, thento 3, ...
until it reaches system 16, then the feedback on message sent back down the chain from system 16 to system 1, then a PUSH
message from system 16 to system 1 following the same chain, then the OFF would be sent from system 1 to system 16, followed
by a feedback off message from system 16 to system 1, then the RELEASE message from system 16 to system 1. Therefore that
single pulse becomes 90 messages across the network. Another drawback to this topology is if a single master loses
communication than all subsequent masters will cease communicating.

Star Topology

FIG. 11 shows the M2M system configured in a star topology to take advantage of the fact that each NetLinx master supports
multiple connections to masters:

FIG. 11 Star Topology

In a Star topology, the URL Lists would be configured as shown below:
System Number

1 2
2 |3
3 |4
4 |5
5 |6
6 |7
7 8
8 |9
9 10
0 |11
11 12
12 |13
13 14
14 |15
15 |16

NOTE: The system number is being used here for readability, the actual URL/IP address must be entered into the URL List.

The largest drawback to this configuration is that if there is a communication issue with master 1 all other masters lose connection
with each other.

Language Reference Guide - NetLinx Programming 163

Cluster Topology

Appendix B - Master-To-Master (M2M)

Another possible connection topology is to establish communication hubs by combining the previously discussed topologies that

optimize the traffic with adjacent masters but still allow connections to all other masters, as shown in FIG. 12:

FIG. 12 Clustered Master Interconnection Topology

In a Cluster topology, the URL Lists would be configured as shown below:

System Number

1 2 7 12
2 3 8 13
3 4 9 14
4 5 10 15
5 6 16
6 11

NOTE: The system number is being used here for readability, the actual URL/IP address must be entered into the URL List.

When determining the interconnection topology of many NetLinx masters, special consideration should be made to have masters
that communicate a lot of information with each other to connect to each other. Thus if you have two systems that share devices,
control, or information they should probably be near each other in the topology and not at opposite ends of the connection matrix
where each message is forced to pass through several NetLinx masters.

NOTE: Utilizing route mode direct will enable masters to isolate themselves from most traffic or to target the messages which will
reduce network traffic and processor overhead.

Language Reference Guide - NetLinx Programming

164

Appendix B - Master-To-Master (M2M)

Cascade Topology
FIG. 13 shows 16 masters connected to each other such that any master is routeable to any other master using route mode direct.

FIG. 13 Cascading Master Topology
In a Cascade topology, the URL Lists would be configured as shown below:
System Number

10 |11 12 |13 |14 |15 |16

Ol 0| N| &
(o]
©o

10 |11 12 |13 |14 |15 |16

O 0| N| o »n

Ol 0| N| o O b~

Ol 0| N| of tif M| W

10 (11 |12 |13 |14 |15 |16

10 |11 12 |13 |14 |15 |16

©| 0| N| O] O] | W| N| B
OW| 0| N of ;| M| W| N

-
o
-
-

12 (13 |14 |15 |16

10 |11 |12 (13 |14 |15 |16
11 |12 |13 |14 [15 |16

12 |13 |14 |15 |16

13 |14 |15 |16

14 |15 |16

15 |16

NOTE: The system number is being used here for readability, the actual URL/IP address must be entered into the URL List.

This topology has many advantages over the previously listed methods:
e Each master is able to see all the other masters, with one hop
e No passing of messages, which reduces the processing load on the master
e Robust, if one master goes down communication is lost with only that master and the devices connected to it
e Reduced network traffic

Language Reference Guide - NetLinx Programming 165

Cluster Topology Modified

Appendix B - Master-To-Master (M2M)

FIG. 14 uses the Cluster concept and direct mode to link specific masters, yet remain isolated from other masters on the network.

FIG. 14 Clustered master topology.
The URL Lists would be configured like this:
System Number

1 2 7 16 |12
2 3 8 13
3 4 9 14
4 5 10 15
® 6 16
6 11

NOTE: The system number is being used here for readability, the actual URL/IP address must be entered into the URL List.

Although this topology looks similar to the previous Cluster topology (see FIG. 12 on page 164), by using route mode the
communication connections are very specific. Masters will only be able to communicate with masters that have an arrow between

them. For example:

e The master with system 1 will only be able to communicate with masters 2, 3, 4, 5, 6, and 11, but will not connect with

masters 7, 8,9, 10,12, 13, 14, 15, and 16.

e The connection, indicated with the red arrow, between master 10 and master 16 may appear to create a routing loop, but

since the masters are configured to use route mode direct a loop is avoided.
e Master 10 will only be able to connect with masters 6 and 16.

The goal when using M2M is to minimize the amount of traffic between masters while providing the required functionality. Using
route mode direct with the appropriate topology helps to accomplish this goal because it is the most efficient routing method since
it will reduce network traffic and master processing of messages.

Language Reference Guide - NetLinx Programming

166

Appendix B - Master-To-Master (M2M)

Configuring and Programming M2M Systems

Using NetLinx Studio with M2M Systems

NetLinx Studio can be used to configure and diagnose M2M systems. After you have connected NetLinx Studio to the master, and
you have configured the master with the proper "Network Address" information, you will need to change the system number on the
master via the Device Addressing dialog (FIG. 15):

Device Addressing @
Device/System Change of Address Options 1D Mode
Device to Change
s o
Dares! [U— e D evice: [—‘ Destination System:
[~ Change Device Change to Device

Device: |7
System to Change =
System: |1 New System: [2 System: |0
¥ Change System
Start |dentify Mode

[oomoomssmontinn || ey

[Reboot Master... }

FIG. 15 NetLinx Studio - Device Addressing dialog

To access this dialog in NetLinx Studio, select Diagnostics > Device Addressing... (or select the DPS icon from the Diagnostics
toolbar).

NOTE: Once the System Number has been changed the master must be rebooted for the change to go into effect.
The next step is to configure the URL List, via the URL Listing and Add URL dialogs (FIG. 16).

R AT ERFTTERTTTTRTTERNTTN)

Syster IU Device: |0 Get URL List

URL Port Secured | IP Address Connection Status
192 168,244,140 18 N 192 162.244.140 [A g q URL (%]

URL, [192168.244 141 =
Part: (1319 _lﬂ

™ Authentication Aequired

Uzer Name:
< I Password l—
Add..,] [Remove] [Remaove Al J [_.‘ISTEI’]] Tone

FIG. 16 NetLinx Studio - Device Addressing dialog

To access the URL Listing dialog in NetLinx Studio, select Diagnostics > URL Listing..., or click the URL icon from the

Diagnostics toolbar.

e The Get URL List button will retrieve and display the URL List currently configured on the master which matches the
"System" number specified, "0" indicates the master that NetLinx Studio used from the specified "Communication
Settings". The URL List can be retrieved from other masters within the configured M2M topology. Each entry will report a
"Connection Status" in the last column. The status values are "Looking up IP, Attempting Connection, and Connected"

e The Add button will launch the Add URL dialog to add a new URL to the list using the appropriate authentication credentials,
if required.

e The Remove button will remove the currently selected entry from the URL List.
e The Remove All button will remove all the entries from the URL List.

e The Listen button will launch a window that will allow NetLinx Studio to listen for NetLinx masters on the local subnet using
the port specified, default port 1319. From this view the options are to close the window or add the selected NetLinx master
and its associated IP information to the Add URL dialog.

The masters and devices in a M2M system can be viewed using the Refresh Network Online Tree option within the Online Tree (click
the Display button in the Online Tree tab of the Workspace Bar to access the Online Tree menu). This function will run a recursive
process that will connect to the master specified in the Communication Settings dialog, and gather information to populate the
Online Tree. If there are any other masters in the routing table, NetLinx Studio will then connect to those masters and get their
information until the end of each branch is reached. There are some limitations in diagnosing or watching devices/ports in a M2M
system using NetLinx Studio. For example, if NetLinx Studio is connected to master system 1, and a connection is established to
master system 2, then only the devices on system 2 defined within the code of system 1 will be accessible to watch via
"Asynchronous Notifications".

Language Reference Guide - NetLinx Programming 167

Appendix B - Master-To-Master (M2M)

Using Telnet with M2M Systems

Once the master's system number has been configured via NetLinx Studio, a telnet session can be used to configure and diagnose
M2M systems. Note, when troubleshooting M2M systems NetLinx Studio and telnet connections to the master complement each
other as the information from one application/interface may not be available from the other. The first command to become familiar
with is to set the routing mode on the master. The command is "route mode" followed by the desired mode, direct or normal. The
routing mode on the master can be verified by sending the command "route mode" with no parameter, or with the command "show
route". The "show route" command is described in a previous section of this document.

To view the entries in the URL List use the command "show url". To modify the entries in the URL List use the command "set url".
Both of these commands will accept a <D:P:S> parameter to view or modify URL Lists on other masters.

The command "show system" will display all the systems and devices that are online and tracked in the device manager. The device
manager tracks all devices defined in DEFINE_DEVICE or used in DEFINE_EVENT. The "show system" command supports two
mutually exclusive parameters. The "<S>" parameter displays the devices on the specified system. For example, when connected
to system 1 issue the command "show system 2" to display the devices on System 2. Using the "/min" parameter will limit the
display to a minimal set of information.
There are two commands that are similar yet remain unique, they are "show remote" and "show notify".
e "show remote" displays the devices on a remote master that are being monitored by the local master.
e "show notify" displays the devices on the local master that are being monitored by a remote master.
The outputs of both commands are structured similarly and are described below. In the example below, "show remote" was issued
on system 1. "show notify" was issued on system 16:
>show renot e
Show Renote Devi ce List
Devi ce List of Renpte Devices requested by this System
Device Port System Needs
05001 00001 00016 Channel s Conmands Strings
05001 00005 00016 Channel s Conmands
33001 00001 00016 Channel s Cormands Strings Levels
>show notify
Show Notification List
Device Notification List of devices requested by other Systens
Devi ce: Port System Needs
05001: 00001 00001 Channel s Commands Strings
05001: 00005 00001 Channel s Conmands
33001: 00001 00001 Channel s Cormands Strings Levels

« Device column: The Device column lists the device that is being monitored.

* Port column: The Port column lists the port on the device that is being monitored

¢ System column: | The System calling lists the system number that the device is connected to in the case of the “show remote”.
With “show notify” the system number that is watching the device will be listed.

* Needs column: The Needs column contains the information that is being tracked. A device defined in “DEFINE_DEVICE” or
used in “DEFINE_EVENT” will list the default needs “Channels Commands”. The “Strings” need will be listed if
the device is used in a “DATA_EVENT” or "CREATE_BUFFER”. The “Levels” need will be listed if the device is
used in a “LEVEL_EVENT” or “CREATE_LEVEL".

The command to view all of the TCP connections on a master is "show t cp". This command supports two parameters:
e The first parameter is "/ v" which stands for verbose, this does not appear to change the results.
e The second parameter is "/ al | ", this will display information about all 200 TCP/IP locations.

Control/NetLinx Language Support

The features of control to M2M include channel control (PUSH/RELEASE/ON/QOFF/TO), level control, send commands and send
strings. Channel controls allow one NetLinx master to PUSH/RELEASE a channel on a device of another system via the DO_PUSH/
DO_RELEASE functions. Additionally, ON, OFF, TO, and feedback statements can control channels on devices of remote systems. If a
channel has a characteristic modifier associated with it, that modifier still applies to the channel regardless of whether the channel
is manipulated locally or remotely. For example, if a group of channels and variables is mutually exclusive then an ON to one of the
channels will turn off all other channels and variables in the group prior to turning on the desired channel. Levels, strings and
commands are essentially forwarded to the destination device. Note that control is not limited to physical devices and that NetLinx
program defined virtual devices may also be manipulated by a remote system. This allows a local system to define a virtual device
that can receive PUSH, RELEASE, ON, OFF, etc. and make programmatic decisions based upon that control. Additionally, notification
of control messages is not limited to "main line" functions like PUSH and RELEASE; rather all EVENT based code will operate
normally regardless of the source of the original control message/function.

Language Reference Guide - NetLinx Programming 168

Appendix B - Master-To-Master (M2M)

Design Consideration and Constraints

In order to reference devices of other NetLinx systems, the devices MUST be defined in the DEFI NE_DEVI CE section of the NetLinx
program. Conversely, only devices that are necessary should be placed in the DEFI NE_DEVI CE section to avoid any unnecessary
network traffic between NetLinx masters.

o DEFINE_LATCHING - A remote device’s channel is not allowed in the DEFINE_LATCHING section.
DEFINE_MUTUALLY_EXCLUSIVE - A remote device’s channel is not allowed in the DEFINE_MUTUALLY_EXCLUSIVE section.
DEFINE_TOGGLING - A remote device’s channel is not allowed in the DEFINE_TOGGLING section.

The proper way to modify a channel’s behavior is to use ON/OFF/TO/PULSE!

DEFINE_MODULE - As a guideline the best practice is to run a Ul module on the master that the touch panel or keypad is
connected to, and to run the COMM module on the master that the device is connected to. This practice should limit the
number of messages across the network as the amount of messages between the Ul and COMM modules is generally
smaller than the amount of messages between the device and the COMM module.

Inter-Master Variables

Inter-master variables are not implemented at this time. However the value of variables may be passed among the masters in the
system using SEND_COMMAND or SEND_STRING to a common virtual device.

Using Virtual Devices as Moderators

Virtual Devices may be used as moderators to share information between masters that may or may not be related to specific
devices, like passing the values of a variable. They can also be used to minimize the network traffic by using them to distribute the
information to multiple devices on other masters.

Code Example: Tracking Online/Offline State In a Remote Master

DEFI NE_DEVI CE

SYSTEMA = 33001:1: 4
DEFI NE_VARI ABLE

I NTEGER SYSTEMA_STATUS
DEFI NE_EVENT
DATA_EVENT[SYSTEM]

ONLI NE:

SYSTEM4_STATUS = 1
}

OFFLI NE:

{
SYSTEM4_STATUS = 0
}
}
Modifying the URL List From Within the NetLinx Code

There may be times when viewing or changing the URL List from within the NetLinx code is desired. This can be accomplished using
the following functions “GET_URL_LIST”, “ADD_URL_ENTRY”, and “DELETE_URL_ENTRY". Please refer to the NetLinx Keywords Help
within NetLinx Studio for details and examples.

M2M Processing Queues and Troubleshooting

The Route Manager queue is the message queue that receives any inbound route table messages from other masters. These
messages are then processed by the Route Manager firmware to update its tables, refer to the section above labeled “Master
Routing”.

The Notification Manager queue is the message queue that receives notification requests for device state changes from a remote
entity (ex. another master). In M2M communication, two connected masters do not blindly forward all local device state changes to
the other master. Instead, they will only forward specifically requested state changes based on the remote master’s needs as
defined in the NetLinx code, refer to the telnet commands “show remote” and “show notify”. The Notification manager queue
receives these messages and then the Notification manager processes the requests and adds the information to its database, refer
to the telnet commands “show remote” and “show notify”, of “requested” state changes. When a state change occurs in the
master, it compares the change to its database and if a remote master has requested notification of the change, it forwards the
state change to the remote master.

When configuring M2M systems it may be necessary to alter the queue sizes of the above mentioned queues. This can be done
using the following telnet commands “show buffers”, “show max buffers”, and “set queue size”. To view the number of messages in
each queue at a specific moment use the command “show buffers”. To monitor the largest number of messages in each queue
since the master has booted use the command “show max buffers”. Use the command “set queue size” to determine and set the
upper limit on each queue. If the information returned from “show max buffers” is equal to the upper limit of the queue, it would be
appropriate to increase the upper limit of the queue size.

General M2M Issues

When multiple masters exist within a large NetLinx installation the significance of the System number component cannot be over
emphasized. Out of habit it is easy to ignore the system field within NetLinx Studio because its value has not meant anything in
standalone systems. A significant source of technical support phone calls will be directly related to invalid or unintentionally
incorrect settings of the system number, URL List, or route mode. When NetLinx Studio connects to a single master, yet allows the
user to access all other system masters it is inevitable that some confusion will occur. Therefore, it is a good idea to document each
master’s system number and the topology of the interconnections!

Language Reference Guide - NetLinx Programming 169

Appendix C -

Marshalling Protocol

Overview

The protocol assumes that every logical field (group of bytes) is prefixed with type/size information. For example, if there is a 4
byte long integer field within a structure, the byte stream representing that field consists of 5 bytes. The first byte (OxE3) specifies

that a long integer follows and then the 4 remaining bytes contain the value of the long integer.

Appendix C - Marshalling Protocol

This concept is extended to all primitive, structure and array types. The type of a field is always stored as a single byte. The size of
a field may or may not be stored depending upon the field type (fields with know lengths do not have a size prefix).

The specific formats of all the supported types are described in the table below.

Marshalled Stream Format

The following table describes the byte format of the various types supported in the marshaller (fields within <>'s indicate actual

data bytes):

Byte Formats Supported in the Marshaller

Type

Description

Stream Format

BYTE

Unsigned char/byte value.

OxE1
<BYTE>

WORD

Unsigned short value.

OxE2
<WORD Hi >
<WORD Lo>

DWORD

4-byte value (could be an unsigned long integer or a float).

OxE3
<DWORD MsSB>

<DWORD LSB>

QWORD

8-byte value (could be an unsigned Quad-word or a double).

OxE4
<QWORD MSB>

<QWORD LSB>

BYTESTR

Sequence of BYTE's whose element count is <= 64K.

OxE5

Length Hi
Length Lo
<BYTE Sequence>

WORDSTR

Sequence of WORD's whose element count is <= 64K.

OxE6

Length Hi
Length Lo
<WORD Sequence>

DWORDSTR

Sequence of DWORD's whose element count is <= 64K.

OxE7

Length Hi

Length Lo
<DWORD Sequence>

QWORDSTR

Sequence of QWORD's whose element count is <= 64K.

OxE8

Length Hi

Length Lo
<QMORD Sequence>

LBYTESTR

Large sequence of BYTE's whose element count can be > 64K (larger version of
BYTESTR).

OxE9
Length MSB

Length LSB
< BYTE Sequence>

Language Reference Guide - NetLinx Programming

169

Appendix C - Marshalling Protocol

Byte Formats Supported in the Marshaller (Cont.)

STRUCT A structure containing one or more fields. OXxEA
Each element within a structure is self-descriptive and can be any of the types in this | <First Struct El ement 1>
table.
ENDSTRUCT | Byte indicator for end of structure - not really a data type prefix. 0xEB
ARRAY Array of any one of the types in this table whose elementcount can be > 64K. OXEC
Each element in an array is self descriptive. Length MSB
The type of the first element (byte after LengthLSB) is the type of the entire array.
Length LSB
<Array El erment 1>
SKIP Byte indicator for space to be skipped in the input and NULL'ed in the marshaled O0XED
output. This can be viewed as a NULL data type prefix.

Marshalling Protocol (Variables)

The protocol assumes that every logical field (variable) is identified with a name or index, type/size information and the actual
data. For example, if there is a 4 byte long integer field within a structure, the XML stream representing that field would consist of 3

tags:

e A name tag specifying the name of the variable

e a type tag specifying a 4 byte unsigned value
e the data.
This concept is extended to all primitive, structure and array types. The type of a field is always stored using W3C standard type
declarations. The type of the field is optional, as the data will be "stuffed" into whatever type matches the name of the parameter.
The specific formats of all the supported types are described below.

Marshalled Stream Format
The following table describes the byte format of the various types supported in the XML marshaller.

Types Supported in the XML Marshaller

Type Description Stream Format
BYTE Unsigned char/byte value. If var is an element of an array, name is <var >
replaced with <index></index>. <name>MyNane</ name>
The index value, and the type are optional. Typically, only <type>ui 1</ type>
<var><data>Data</data></var> is needed. <dat a>255</ dat a>
</var>
UWORD Unsigned short value. If var is an element of an array, name is replaced <var >
with <index></index>. <nanme>M/Nane</ nane>
The index value, and the type are optional. Typically, only <type>ui 2</type>
<var><data>Data</data></var> is needed. <dat a>65535</ dat a>
</var>
WORD Signed short value. If var is an element of an array, name is replaced <var >
with <index></index>. <name>MyNane</ nane>
The index value, and the type are optional. Typically, only <type>i 2</type>
<var><data>Data</data></var> is needed. <dat a>- 32767</ dat a>
</var>
ULONG 4-byte unsigned value. If var is an element of an array, name is replaced | <var>
with <index></index>. <name>MyNane</ name>
The index value, and the type are optional. Typically, only <type>ui 4</type>
<var><data>Data</data></var> is needed. <dat a>4294967295 </ dat a>
</ var>
LONG 4-byte signed value. If var is an element of an array, name is replaced <var >
with <index></index>. <nanme>M/Nane</ nanme>
The index value, and the type are optional. Typically, only <type>ui 4</type>
<var><data>Data</data></var> is needed. <dat a>- 2147483647 </ data>
</ var>
FLOAT 4-byte IEEE 754 float value. If var is an element of an array, name is <var >
replaced with <index></index>. <name>MyNane</ nane>
The index value, and the type are optional. Typically, only <type>float.|EEE. 754. 32</type>
<var><data>Data</data></var> is needed. <dat a>1.23</ dat a>
</var>
DOUBLE 8-byte IEEE 754 float value. If var is an element of an array, name is <var>
replaced with <index></index>. <nane>MyNanme</ name>
The index value, and the type are optional. Typically, only <type>float.|EEE. 754. 64</type>
<var><data>Data</data></var> is needed. o <d5>‘t a>4. 56</ dat a>
var

Language Reference Guide - NetLinx Programming

170

Appendix C - Marshalling Protocol

Types Supported in the XML Marshaller (Cont.)

STRUCT A structure containing one or more fields. <struct> <nane><MWName></ nane>
Each element within a structure is self-descriptive and can be any of the <var>...
types in this table. </var>
If the struct is the outermost parent, then name is optional. If struct is </struct>
an element of an array, name is replaced with <index></index> and the
index value.
ARRAY Array of any one of the types in this table. <array>
Each element in an array is self-descriptive. The type of the parent is the <nane><M/Nane></ nane>
type of the entire array. <type>Type</type>
Type is optional and generally not included when the array is an array of z:;: I;engt h>100</ cur Lengt h>

structures.

Current Length is optional.

Array can contain a series of items, a series of structures or a series of
array.

Elements of an array should define an index instead of a name. This is
the commonly used format for structures but all types are allowed.

<i ndex>1</i ndex>...
</var></array>

LL.0r. .
<array>
<nanme><MyNane></ nanme>
<type>Type</type>
<cur Lengt h>100</ cur Lengt h>
<struct>
<i ndex>1</i ndex>...
</ struct>
</array>

R o]
<array>
<nanme><MyNanme></ nane>
<type>Type</type>
<cur Lengt h>100</ cur Lengt h>
<array>
<i ndex>1</i ndex>...

</ array>

</ array>

Array - String
encoding
(Strings)

Array of unsigned characters.
Data is encoded using String encoding.
Type and length are optional.

<array>
<nanme><MyNane></ nanme>
<type>Type</type>
<cur Lengt h>100</ cur Lengt h>
<string>WMyString</string>
</ array>

ARRAY - Binary
Encoded

Array of any one of the types in this table except structures. This is the
default for all non-CHAR arrays but CHAR arrays can use this encoding
as well.

The type of the parent is the type of the entire array. Type is optional
and generally not included.

Current Length is optional.

Style is LE for little endian or BE for big endian. BE is the default.

Size indicates the byte size but not the type.

ByteSize=4 is used for LONG, SLONG, and FLOAT and means that 8
nibbles will be present for each element being encoded/decoded.

<array>
<name><MW/Name></ name>
<type>Type</type>
<cur Lengt h>100</ cur Lengt h>
<encoded>
<styl e>LE or BE</ style >
<size>1, 2, 4, 8</si ze>
<dat a>01020304</ dat a>
</ encoded>
</ array>

Encoding Notes
e The encoding XML will not contain any white space. This includes CR,LF pairs.

e The decoding XML may contain white spaces. They will be ignored according to standard XML rules (i.e. Spaces as between
tags are read.)

e Array may be encoded or decoded as binary encoded data
e XML comments, <!-- -->, will be ignored in decode.

String Encoding

NetLinx has no native string type, but since it is a common type the encoding/decoding of the string data will be logically handled
so the XML remains concise. CHAR arrays will be encoded/decoded as a string type, printable ASCII characters appear as ASCII,
and non-printable characters appear as escaped decimal or hex code, &#<decimal code>; or &#x<hex code>;. An example string

would be:

<data>My Nane is Ji my Buffet  </ dat a>

-or -

<data>My Nanme is Jimmy Buffet </data>
Additionally, some characters have a more readable syntax. These characters are invalid in XML; so, the following characters can be
encoded in the above format or the following format:

Language Reference Guide - NetLinx Programming

171

Appendix C - Marshalling Protocol

Character | Escape Version
< <
> >
& &
'
" "

Binary Array Encoding

Arrays can optionally be encoded/decoded as pairs of ASCII-encoded HEX. The pairs of ASCII-encoded HEX needs to be padded to
the size of the data so a 4-byte data value needs to have 4 bytes that represent it. There are no spaces between pairs, and the
default is Big-Endian. Little Endian can be encoded or decoded as an option. The HEX letters may appear as upper or lower case and
are by default upper case. Any example of a 2-byte (signed or unsigned) array containing the value 1,2,3,4,1,12,13,14 is:
<encoded>
<styl e>BE</ style >
<si ze>2</si ze>
<dat a>010203040B0CODOE</ dat a>
</ encoded>
This is the default type of encoding for non-CHAR arrays but can be used to encode/decode char arrays as well. The data section
must contain BytesSize*Elements nibbles.

Binary Encoding Result

Binary Encoding Result

Byte In Encoded String Description

$EC Start of Array Encoding

$00 $00 $00 $03 Number of Elements in the Array
$EA Start of Structure

$E3 DWORD: LONG or SLONG
$00 $A9 $63 $48 Data: 11101000

$E5 Start of CHAR Array (String)
$00 $0D Length of Array: 13

$42 $75 $66 $66 $65 $74 $2C $20 $4A $69 $6D $6D $79 Data: 'Buffet, Jimmy'

$E5 Start of CHAR Array (String)
$00 $1A Length of Array: 26

$4C $69 $76 $69 $6E $67 $20 $26 $20 $44 $79 $69 $6E $67 $20 $69 $6E $20 $33 $2F $34 $20 | Data: 'Living & Dying in 3/4 Time'
$54 $69 $6D $65

$E5 Start of CHAR Array (String)
$00 $03 Length of Array: 3

$4D $43 $41 Data: 'MCA'

$E5 Start of CHAR Array (String)
$00 $03 Length of Array: 3

$4D $43 $41 Data: 'MCA'

$E5 Start of CHAR Array (String)
$00 $04 Length of Array: 4

$31 $39 $37 $34 Data: '1974'

$E2 WORD: INTEGER or SINTEGER
$00 $0B Data: 11

$E5 Start of CHAR Array (String)
$00 $0A Length of Array: 10

$33 $31 $33 $32 $33 $33 $33 $34 $33 $35 Data: '3132333435'

$E2 WORD: INTEGER or SINTEGER
$00 $5B Data: 91

$EB End of Structure

$EA Start of Structure

$E3 DWORD: LONG or SLONG

$01 $07 $2F $E5 Data: 17248229

Language Reference Guide - NetLinx Programming 172

Appendix C - Marshalling Protocol

$E5 Start of CHAR Array (String)

Binary Encoding Result (Cont.)

Byte In Encoded String Description

$00 $0D Length of Array: 13

$42 $75 $66 $66 $65 $74 $2C $20 $4A $69 $6D $6D $79 Data: 'Buffet, Jimmy'

$E5 Start of CHAR Array (String)
$00 $15 Length of Array: 21

$4F $66 $66 $20 $74 $6F $20 $53 $65 $65 $20 $74 $68 $65 $20 $4C $69 $7A $61 $72 $64 Data: 'Off to See the Lizard'
$E5 Start of CHAR Array (String)
$00 $03 Length of Array: 3

$4D $43 $41 Data: 'MCA'

$E5 Start of CHAR Array (String)
$00 $03 Length of Array: 3

$4D $43 $41 Data: 'MCA'

$E5 Start of CHAR Array (String)
$00 $04 Length of Array: 4

$31 $39 $38 $39 Data: '1989'

$E2 WORD: INTEGER or SINTEGER
$00 $0B Data: 11

$E5 Start of CHAR Array (String)
$00 $0A Length of Array: 10

$33 $31 $33 $32 $33 $33 $33 $34 $33 $36 Data: '3132333436'

$E2 WORD: INTEGER or SINTEGER
$00 $69 Data: 105

$EB End of Structure

$EA Start of Structure

$E3 DWORD: LONG or SLONG
$00 $BC $1E $A4 Data: 12328612

$E5 Start of CHAR Array (String)
$00 $0D Length of Array: 13

$42 $75 $66 $66 $65 $74 $2C $20 $4A $69 $6D $6D $79 Data: 'Buffet, Jimmy'

$E5 Start of CHAR Array (String)
$00 $05 Length of Array: 5

$41 $2D $31 $2D $41 Data: 'A-1-A'

$E5 Start of CHAR Array (String)
$00 $03 Length of Array: 3

$4D $43 $41 Data: 'MCA'

$E5 Start of CHAR Array (String)
$00 $03 Length of Array: 3

$4D $43 $41 Data: 'MCA'

$E5 Start of CHAR Array (String)
$00 $04 Length of Array: 4

$31 $39 $37 $34 Data: '1974'

$E2 WORD: INTEGER or SINTEGER
$00 $0B Data: 11

$E5 Start of CHAR Array (String)
$00 $0A Length of Array: 10

$33 $31 $33 $32 $33 $33 $33 $34 $33 $37 Data: '3132333437'

$E2 WORD: INTEGER or SINTEGER
$00 $BD Data: 189

$EB End of Structure

Language Reference Guide - NetLinx Programming 173

Appendix C - Marshalling Protocol

XML Encoding Result

<array>
<cur Lengt h>0</ cur Lengt h>
<STRUCT>
<i ndex>1</i ndex>
<var >
<nanme>LTIl TLEI D</ nanme>
<dat a>11101000</ dat a>
</ var>
<array>
<nanme>SART| ST</ nane>
<cur Lengt h>13</ cur Lengt h>
<string>Buffet, Jimmy</string>
</ array>
<array>
<nanme>ST| TLE</ nanme>
<cur Lengt h>26</ cur Lengt h>
<string>Living &np; Dying in 3/4 Tine</string>
</ array>
<array>
<nanme>SCOPYRI GHT</ name>
<cur Lengt h>3</ cur Lengt h>
<string>MCA</string>
</ array>
<array>
<nanme>SLABEL</ nanme>
<cur Lengt h>3</ cur Lengt h>
<string>MCA</string>
</ array>
<array>
<nane>SRELEASEDATE</ nane>
<cur Lengt h>4</ cur Lengt h>
<string>1974</string>
</ array>
<var >
<nanme>NNUMTRACKS</ name>
<dat a>11</ dat a>
</var >
<array>
<nane>SCODE</ nane>
<cur Lengt h>10</ cur Lengt h>
<string>3132333435</string>
</ array>
<var >
<name>NDI SCNUMBER</ nane>
<dat a>91</ dat a>
</var >
</ STRUCT>
<struct>
<i ndex>2</i ndex>
<var >
<nanme>LTIl TLEI D</ nanme>
<dat a>17248229</ dat a>
</ var>
<var >
<namne>NDI SCNUMBER</ nane>
<dat a>105</ dat a>
</var >
</ STRUCT>
<STRUCT>
<i ndex>3</i ndex>
<var >
<nanme>LTIl TLEI D</ nanme>
<dat a>12328612</ dat a>
</ var>
<var >
<name>NDI SCNUMBER</ name>
<dat a>189</ dat a>
</var >
</ STRUCT>
</ array>

Language Reference Guide - NetLinx Programming 174

Appendix D - NetLinx vs. Axcess

Appendix D - NetLinx vs. Axcess

Overview

The NetLinx control system was designed to upgrade the processor bus and improve the power of the Axcess programming
language. Originally named Axcess2, the NetLinx was designed to be a superset of the Axcess programming language. The
relationship between the new language (NetLinx) and Axcess is very similar to the relationship between C++ and C. Just as C++
brought a whole new level of power to C programming, NetLinx offers a variety of new tools and commands to dynamically increase
the speed and power of present and future applications. NetLinx contains all of the elements of Axcess. Largely, you can use the
same code from Axcess systems in NetLinx systems. Some exceptions include variable names conflicting with new NetLinx
keywords; however, Axcess keywords are valid in NetLinx. You cannot compile NetLinx code on an Axcess compiler, or download
NetLinx code to an Axcess control system. To upgrade an existing Axcess control system to NetLinx you must upgrade the Axcess
Master to a NetLinx Master. You can still use the existing Axcess equipment as long as you can disable the existing Axcess Central
Controller.

NOTE: The exceptions are the Axcent, the Axcent2, the AXB-EM232, and the AXB-MPE+ Master Port Expander. None of these
integrated controllers allow you to disable the Central Controller. Both Axcess Card Frame Systems and Axcent3 systems allow you to
either remove or disable the Axcess Central Controller.

NOTE: If you are using an Axcent3 / Axcent3 Pro, you can disable the Master with the Open Axcess program. You can connect the
Axcent3 / Axcent3 Pro to a NetLinx Master Module via AxLink. Then you can compile and download the existing Axcess code.
Several Axcess control limitations have been fixed in NetLinx.

e NetLinx expands the types of data and variables from Axcess.

e NetLinx provides multiple processes and event threads beyond the Mainline in Axcess.

e NetLinx offers more options in distributed processing. NetLinx expands and strengthens Master-to-Master communications
and expands the traditional AxLink bus to include ICSNet and Ethernet Network communications.

Axcess is linear in its process. At run time, Axcess runs the DEFINE_START code once when the system is loaded or restarted.
Axcess then makes a pass through mainline code, polls the bus for activity, checks the wait and pulse stacks, and repeats the
process again. The length of mainline and the activity on the bus affect runtime speeds. The mainline process is considered a single
thread. NetLinx runs on multiple threads; mainline and event handlers run on parallel threads. Event handlers are defined within
NetLinx and operate like mini-mainlines. They contain far less code and run faster than mainline. If an event occurs, and an event
handler has been defined for that event, NetLinx bypasses mainline and runs the event handler.

NetLinx vs. Axcess - Comparison by Structure
DEFINE_DEVICE

Axcess Language NetLinx Language
Axcess defines devices with a single number (sometimes called an | NetLinx defines the device by Device:Port:System.
address) from 1 to 255. Axcess permits a Device is a 16-bit integer representing the device number. Physical
maximum of 255 devices on the AxLink bus. devices range from 1 to 32,000. Virtual devices range from 32,768
DEFI NE_DEVI CE to 36,863.
VCR =1 (* AXC-IRS *) .
VPROI= 2 (* AXCIRS *) NOTE: These numbers do not seem so random when
P =128 (* AXT- CALO*) represented in hexadecimal. Physical devices range from

$0001 to $7FFF. Virtual devices range from $8000 to $8FFF.

* Portis a 16-bit integer representing the port number in a range of
1 through the number of ports on the device (1 = this port)

» System is a 16-bit integer representing the system number
(0 = this system).

DEFI NE_DEVI CE

VCR = 1:1:0 (* NXC-IRS4 PORT 1 *)

VPRQJ= 1:2:0 (* PORT 2 *)

TP = 128:1:0 (* AXT-CA10 *)

DEFINE_CONSTANT
Axcess Language NetLinx Language

Axcess defines constants as either a fixed integer value between | NetLinx processes constants just like Axcess. NetLinx also allows you
0 and 65,535 or an array with a maximum length of 255 bytes in | to define an expression in the DEFI NE_CONSTANT section. The
which each element can hold a value from 0 to 255. These values | expression cannot contain any variables.

can be expressed in ASCII, Decimal, or Hexadecimal. DEFI NE_CONSTANT

DEFI NE_CONSTANT VALUE_M N = 40

VALUE_VAX = 140 DEFAULT_NAME = ' Axcess'
DEFAULT_NAME = ' Axcess' ETX [] = { $FE, $FF}

ETX = "$FE, $FF" VALUE_MAX = VALUE M N + 100

VALUE_NMAX VALUE_M N + 100

Language Reference Guide - NetLinx Programming 175

DEFINE_VARIABLES

Appendix D - NetLinx vs. Axcess

Axcess Language

NetLinx Language

Axcess supports 5 types of variables:

« Integer Variables (default) can contain a value from O to
65,535.

« Character Arrays are single element arrays, in which each
element has a value from 0 to 255 with a maximum of 255
elements

« 2-Dimensional Arrays equate to a maximum of 255 single
element character arrays. Each element can have a value from
0 to 255.

« Integer Arrays are single element arrays, in which each
element can contain a value from 0 to 65,535 with a maximum
of 255 elements

« 2-Dimensional Integer Arrays may have a maximum value of
65,535.

Variables are Non-Volatile (the variable loses its value when the

program is loaded, but retains its value if the controller is reset).

DEFI NE_VARI ABLE
VALUE

ARRAY] 3]

ARRAY_2DI M 4] [6]

| NTEGER | NT_ARRAY] 6]

NetLinx substantially increased the number of supported variable
types. In addition to more data types, NetLinx also supports Sets,
Structures, and Multi-dimensional arrays.
Arrays default to Character Arrays. Variables default to Integer
Variables. Variables default to Non-Volatile, but can be set as Non-
Volatile or Volatile (Volatile variables are initialized when code is loaded
or when the system is reset).

DEFI NE_VARI ABLE

CHAR VALUEL
W DECHAR Bl GCHAR

I NTEGER VALUE2

SI NTEGER SI GNEDL

LONG Bl GVALUE
SLONG Sl GNED2

FLOAT DECI MAL
DOUBLE VERYBI GVALUE

I NTEGER ARRAY[3] [3] [3]

VOLATI LE | NTEGER RESET_VAR

DEFINE_CALL (Subroutines)

Axcess Language

NetLinx Language

Axcess provides two methods for incorporating subroutines into

your program.

* DEFINE_CALL subroutines are defined in the program and
support parameter passing into the call. Changing the
parameter value inside the call changes the value of the
variable passed to the parameter. The DEFINE_CALL can use
global variables or defined local variables. DEFINE_CALL is for
standalone statements and cannot be used in-line as an
expression.

« SYSTEM_CALL is an externally defined subroutine with a '.LIB'
extension. SYSTEM_CALL programs are produced by AMX and
are available on CD-ROM and on the Tech Support Web site at
www.amx.com.

DEFI NE_CALL ' SWTCH (CARD, I N, QUT)

{
SEND_STRI NG CARD,
"ITOACIN), ' *', 1 TOA(OQUT), " 1"
}
DEFI NE_CALL ' MULTIPLY' (X, Y, RESULT)
{
RESULT = X * Y
}
DEFI NE_PROGRAM
PUSH[TP, 11]
{
CALL ' SWTCH (SW TCHER 4, 1)
}
PUSH[TP, 12]
{

CALL " MULTI PLY" (3, 4, VALUE)

}
SYSTEM CALL [1] ' VCR1'
(VCR, TP, 21, 22, 23, 24, 25, 26, 27, 28, 0)

Like Axcess, NetLinx supports DEFINE_CALL and SYSTEM_CALL.

NetLinx also supports functions, which are similar to a

DEFINE_CALL(s). They can be used standalone or in-line as an

expression. Functions are defined in the DEFINE_CALL section of the

code as a global function.

Defining a function differs slightly from a DEFI NE_CALL:

* The data type of the function's return value must be specified.

» The function name is not enclosed with quotes or case sensitive.
DEFI NE_CALL ' SWTCH (CARD, | N, OUT)

{
SEND_STRI NG CARD,
"ITOACIN), ' *', I TOA(OUT), " 1"
}
DEFI NE_FUNCTI ON | NTEGER MULTI PLY
(INTEGER X, | NTEGER V)
{
RETURN (X * Y)
}
DEFI NE_PROGRAM
PUSH] TP, 11]
{
CALL ' SWTCH (SW TCHER 4, 1)
}
PUSH] TP, 12]
{
VALUE = MULTIPLY(3, 4)
}

SYSTEM CALL [1] ' VCRL'
(VCR TP, 21, 22, 23, 24, 25, 26, 27, 28, 0)

DEFINE_START

Axcess Language

NetLinx Language

DEFINE_START sets the initialization parameters for the Axcess
program. This section defines buffers, levels, sets communication
settings, and initializes variables. DEFINE_START is run once when
the program is loaded or the system is reset.

DEFI NE_START

CREATE_BUFFER TP, TP_BUFFER

CREATE_LEVEL VOL, 1, VOL_LEVEL1

SEND_COMMAND SWT,

' SET BAUD 9600, N, 8, 1, DI SABLE'
ON[CLEAR_TO_SEND|

There is no difference between the way Axcess and NetLinx handle the
DEFINE_START section of the program; however, the role of the
DEFINE_START section is greatly reduced. Variable initializations are
handled in the DEFINE_VARIABLE section. Device initializations are
handled with a DATA_EVENT in the DEFINE_EVENT section.

DEFI NE_START

ON[CLEAR_TO_SEND]

Language Reference Guide - NetLinx Programming

176

DEFINE_EVENT

Appendix D - NetLinx vs. Axcess

Axcess Language

NetLinx Language

Axcess does not support events.

Events are a new process in NetLinx. The events thread runs parallel to
the mainline thread. Events describe certain types of conditions within
the control system. If the conditions are defined as a DEFINE_EVENT,
the event code is run and mainline is bypassed.
There are five different types of events: Button Events, Channel Events,
Data Events, Level Events, and Timeline Events.

DEFI NE_EVENT

BUTTON_EVENT[TP, 21]

(* KC REPEAT 'A' *)

{
PUSH;
{SEND_STRI NG KC, 'A
}
RELEASE:
{
}
HOLD[5, REPEAT] :
{
SEND_STRI NG KC, ' A
}
}

DEFINE_PROGRAM

Axcess Language

NetLinx Language

The DEFI NE_PROGRAMor mainline section of the Axcess program

is where most of the programming process takes place. Axcess

supports 99 reserved identifiers or keywords. 83 of these

keywords can be used in the mainline.

Axcess runs through a loop where:

« The AxLink bus is queried for any changes.

« Mainline code is run.

« Axcess checks the wait stack and the pulse stacks for any
expired waits and pulses.

« The process is repeated.

The DEFINE_PROGRAM or mainline section of the NetLinx program
and the DEFINE_EVENT section of code are responsible for processing
events in a NetLinx system. NetLinx has expanded the list of keywords
to 194 reserved identifiers. NetLinx also supports loops, data
conversions, string processing, and file handling.

NetLinx handles mainline in a similar fashion to Axcess, with a couple
of differences. Because NetLinx supports multiple bus formats (AxLink,
ICSNet, and Ethernet), events and changes in bus status are handled
through a connection manager and message queue.

NetLinx checks the message queue to see if an event is defined for the
message. If not, NetLinx makes a pass through mainline.

When NetLinx finishes the event handler or mainline, NetLinx
processes the Wait list and Pulse list, and returns to the message
queue to start the process again.

Language Reference Guide - NetLinx Programming

177

Appendix D - NetLinx vs. Axcess

Axcess/NetLinx Incompatibility

According to previous versions of each of their language reference manuals, Axcess and NetLinx each give the operator NOT
highest precedence while giving AND and OR lowest. As demonstrated in the following code, however, the two systems behave
differently. In reality, Axcess gives the operator NOT lowest precedence.

DEFI NE_VARI ABLE

CDE

DEFINE_CALL ' GO (A B)

{
C
D
E

A && B
B && 'A
!B & 'A

}
DEFI NE_PROGRAM
PUSH] 1, 1]

CALL 'GO (0, 0)

PUSH] 1, 2]

CALL 'GO (1,0)
PUSH[1, 3]

CALL 'GO (0, 1)
PUSH] 1, 4]

CALL 'GO (1,1)

Axcess RESULTS

A B !'A&& B B && 'A 'B & A
0 0 1 0 1
1 0 1 0 1
0 1 1 1 0
1 1 0 0 1
NETLI NX RESULTS
A B 'A&&B B & 'A !B & 'A
0 0 0 0 1
1 0 0 0 0
0 1 1 1 0
1 1 0 0 0

The problem applies whether A and B are channels, variables, or expressions, and for OR as well as AND. To solve the problem, AMX
always recommends the use of (! A) && Binstead of ! A && B; however, and this is critical, some programs out there are taking
advantage of the logic flaw. Where the Axcess programmer intended the truth table of ! (A && B) he/she may have coded ! A &&
B and gotten the desired result. If these systems are converted to NetLinx Masters, the logic will not work as desired.
Please be aware of this difference as you support programs being converted from Axcess to NetLinx. When it occurs, Axcess-like
operation can generally be achieved by including all the conditions to the right of the NOT in a single set of parentheses. For
example:

| F (SYSTEM POAER && ![VCR, PLAY] || [VCR, RECORD])
becomes:

| F (SYSTEM POAER && ! ([VCR, PLAY] || [VCR, RECORD]))

Combining Devices, Channels and Levels

Axcess allows you to combine devices and levels within the DEFINE_COMBINE and DEFINE_CONNECT_LEVEL sections. This method
is static and is fixed when the program compiles. You can combine functionality within mainline by stacking push and release
statements. Stacking pushes allows you the flexibility to conditionally change what elements of the program share functionality, but
the program can be more difficult to maintain over time than if the panels were combined using DEFINE_COMBINE.

NetLinx provides several new methods for combining the functionality of devices, channels, and levels. Using DEV, DEVCHAN and
DEVLEV accomplishes the same thing as stacking pushes in Axcess, and it reduce the overall maintenance associated with stacking
pushes; however, data sets are statically implemented within the DEFINE_EVENT section. When the program compiles, the
references to the data sets in the DEFINE_EVENT are set and cannot change at run time.

Virtual devices, levels and device/channel sets

One of the drawbacks to combining devices and levels in Axcess is the way the central controller handled the first device in the
combine list going online and offline. This resulted in unexpected device behavior and inconsistent feedback.

NetLinx uses virtual devices. Virtual devices carry a device number ranging from 32,768 to 36,863, a port number of 1, and a
system number of 0. Virtual Devices are devices that cannot be taken off the bus. By listing a virtual device as the first device in a
DEFINE_COMBINE, COMBINE_DEVICES, COMBINE_LEVELS, or COMBINE_CHANNELS statement, the abnormalities seen in Axcess
DEFINE_COMBINE statements are eliminated.

Combining and Uncombining devices

NetLinx still recognizes the DEFINE_COMBINE section. This section still operates as it did in Axcess; however, once the
DEFINE_COMBINE section has been compiled it remains static. NetLinx introduces two functions: COMBINE_DEVICES and
UNCOMBINE_DEVICES. COMBINE_DEVICES and UNCOMBINE_DEVICES dynamically change the devices combined together. When
devices are combined the combine list and DEV set lists are reevaluated and updated during run time. COMBINE_DEVICES and
UNCOMBINE_DEVICES are used as stand-alone statements in an event, mainline or in assignment statements. COMBINE_DEVICES
and UNCOMBINE_DEVICES will return a value of 0 or -1, depending on the success or failure of the operation. The first device in a
COMBINE_DEVICES statement should be a virtual device.

Language Reference Guide - NetLinx Programming 178

Appendix D - NetLinx vs. Axcess

The devices, listed after the virtual device, are either a list of individual device numbers, DEV sets, or any combination of devices and
DEV sets. The UNCOMBINE_DEVICES statement requires only the first device in the COMBINE_DEVICES list, which should be a
virtual device. The format for COMBINE_DEVICES and UNCOMBINE_DEVICES is:

COMBI NE_DEVI CES (<virtual device>, <devicel> <device2>.)
UNCOMBI NE_DEVI CES (<virtual device>)

Devices combined with COMBINE_DEVICES respond like devices combined using the DEFINE_COMBINE section. The central
controller recognizes any input from the devices in the combine list as the first device in the list.

Combining and Uncombining levels

The NetLinx functions COMBINE_LEVELS and UNCOMBINE_LEVELS work similar to the DEFINE_CONNECT_LEVEL section in Axcess.
For compatibility with Axcess code, the DEFINE_CONNECT_LEVEL section is still valid. Like COMBINE_DEVICES, COMBINE_LEVELS
and UNCOMBINE_LEVELS can be used within events and mainline code to dynamically change what levels are connected to each
other. It is also recommended that a Virtual DEVLEV set be used as the first DEVLEV set in the COMBINE_LEVELS function. The
format for COMBINE_LEVELS and UNCOMBINE_LEVELS is:

COVBI NE_LEVELS (<virtual DEVLEV>, <DEVLEV1>, <DEVLEV2>.)
UNCOVBI NE_LEVELS (<virtual DEVLEV>)

DEVLEV structures defined within the COMBINE_LEVELS are either individual DEVLEV structures or one dimension of a DEVLEV
array. Any reference to the levels is handled through the first device in the list.

Combining and Uncombining channels

Combining DEVCHANS is unique to NetLinx. The NetLinx function COMBINE_CHANNELS combines an individual channel on a virtual
device to one or more channels on another device (or devices). The format for COMBINE_CHANNELS and UNCOMBINE_CHANNELS
is:

COVBI NE_CHANNELS (<virtual DEVCHAN>, <DEVCHANL[]>, <DEVCHANZ[]>.)
UNCOMBI NE_CHANNELS (<virtual DEVCHAN>)

String Comparisons

While in Axcess it is possible to perform a string comparison using the '?' wildcard, NetLinx requires the COMPARE_STRING function
to be used instead.

Axcess code - string comparison

IF (TIME = '12:00:2?")

(* Do sonething at noon - evaluation is valid for an entire mnute *)
NetLinx code - string comparison

| F (COMPARE_STRI NG(TI ME, ' ' 12: 00: ??"))
/1 Do sonmething at noon - evaluation is valid for an entire mnute

Modules

There are two ways to reuse code in different Axcess programs: Include Files and System Calls.

e Include files redirect the compiler to files with an .AXI extension. The .AXI files can contain the same type of information
present within an Axcess program. All data is accessible both within the Include file and within the primary Axcess
program. Include files are limited because they are static. Mainline statements within the Include file cannot be adapted
from program to program without altering the Include file. To update the Include files in a program, the entire program
must be compiled and loaded.

e System calls are external subroutines that can be instanced and referenced in the main program. Like DEFINE_CALL
subroutines, System Calls can pass parameters to adapt the System Call to the needs of different programs. System Calls
have been one of the primary tools for creating standardized reusable blocks of code. To update the System Calls within a
program, the entire program must be compiled and loaded.

Modules are unique to NetLinx. Like Include files, the code within the Module is not limited to the DEFINE_CALL section. Modules
can contain variable definitions, functions, subroutines, startup code, events, and mainline. Modules are passed parameters that are
used to adapt the information and variables used within the Module (similar to System calls).

Modules are similar to programs loaded into AXB-232++ boxes. They operate as stand-alone programs inside the NetLinx program.
Interaction between the Module and the NetLinx Program is done through User Interface (UI) pushes and releases, turning virtual
device channels on and off, and passing variables and arrays to the Module. The code in the Module is local, or is restricted to use
only within the Module. This means that functions and subroutines defined with Module cannot be directly used with the main
NetLinx code.
Modules will eventually replace System calls. Where several system calls are currently needed to provide device initialization, buffer
processing, and device functionality, one module will handle all three functions.
The first line of a Module contains the MODULE_NAME keyword, the Module name, and the parameter list. The format is shown
below:

MODULE_NAME = ' <npdul e nane>' [(<paraml>, <paranR>, ..., <param\>)]
The <module name> must match the file name, but has the .AXS extension. The module name can be 64 characters long and
contain valid file name characters. The parameter name is optional and follows the same restrictions as subroutine parameters,
with the exception that constants and expressions cannot be used as arguments. Within the NetLinx program, the Module is
referenced using the following format:

DEFI NE_MODULE ' <npdul e nane>' <instance name> [(<passl>, <pass2>, ..., <passN>)]

Language Reference Guide - NetLinx Programming 179

Appendix D - NetLinx vs. Axcess

The <module name> must match the module name specified in the Module file, as shown above. The <instance name> is a unique
name given to each occurrence of the module within the program. If the module is used twice within the program, each occurrence
gets a unique instance name. The parameter list passed to the module must match number and types of parameters listed in the
module file above. The DEFINE_MODULE statements are listed in the code after the DEFINE_CALL and DEFINE_FUNCTION sections,
but before the DEFINE_START section. The DEFINE_MODULE statements cannot appear within the DEFINE_PROGRAM or
DEFINE_EVENTS section.

NOTE: 7o use a module, the module must be compiled with the Source Code, and the Master must be rebooted to run the new module.

Language Reference Guide - NetLinx Programming 180

© 2017 Harman. All rights reserved. NetLinx, AMX, AV FOR AN IT WORLD, and HARMAN, and their respective logos are registered trademarks of Last Revised:

A HARMAN. Oracle, Java and any other company or brand name referenced may be trademarks/reglstered trademarks of their respective companies.
AMX does not assume responsibility for errors or omissions. AMX also reserves the right to alter specifications without prior notice at any time. 2/20/2017

H A R M A N The AMX Warranty and Return Policy and related documents can be viewed/downloaded at www.amx.com.
3000 RESEARCH DRIVE, RICHARDSON, TX 75082 AMX.com | 800.222.0193 | 469.624.8000 | +1.469.624.7400 | fax 469.624.7153

N AMX (UK) LTD, AMX by HARMAN - Unit C, Auster Road, Clifton Moor, York, YO30 4GD United Kingdom ¢ +44 1904-343-100 * www.amx.com/eu/

http://www.amx.com/warranty/

	NetLinx Programming Language - Language Reference Guide
	Table of Contents
	NetLinx Programming Language
	Overview
	Conventions Used in This Document

	NetLinx Programming Overview
	Mainline
	Understanding When DEFINE_PROGRAM Runs
	Summary:
	The Four Conditions That Cause the NetLinx Master To Run DEFINE_PROGRAM
	Unhandled Events
	Writing To a Variable:
	The 1/sec Fail-Safe Timer
	The Empty Event Queue

	Statements and Expressions
	Statements
	Expressions

	Assignments
	Variables
	Output channels

	Comments

	Identifiers
	Overview
	Devices
	Device Numbers - Supported Ranges by Device Type
	Master Device Number
	Physical Devices
	Dynamically Assigned Devices
	Virtual Devices

	Device Arrays
	Device Array Examples

	Device-Channels and Device-Channel Arrays
	Device-Level Arrays

	Subroutines
	Overview
	DEFINE_CALL Subroutines
	SYSTEM_CALL Subroutines
	Function Subroutines
	Calling Parameters

	Subroutine Keywords
	CALL
	DEFINE_CALL
	SYSTEM_CALL

	Compiler Directives
	Overview
	#DEFINE
	#DISABLE_WARNING
	#ELSE
	#END_IF
	#IF_DEFINED
	#IF_NOT_DEFINED
	#INCLUDE
	#WARN

	Array Keywords
	Overview
	Multi-Dimensional Arrays

	Array Keywords
	LENGTH_ARRAY
	MAX_LENGTH_ARRAY
	SET_LENGTH_ARRAY

	Audit Keywords
	AUDIT_NETLINX_ GENERIC_EVENT
	AUDIT_NETLINX_ SESSION_EVENT

	Authentication Keywords
	VALIDATE_NETLINX_ ACCOUNT
	VALIDATE_NETLINX_ ACCOUNT_WITH_ PERMISSION

	Buffer Keywords
	CLEAR_BUFFER
	CREATE_BUFFER
	CREATE_MULTI_BUFFER
	GET_BUFFER_CHAR
	GET_BUFFER_STRING
	GET_MULTI_BUFFER_STRING

	Channel Keywords
	OFF
	ON
	TOTAL_OFF

	Clock Manager Keywords
	CLKMGR_SET_DAYLIGHT SAVINGS_OFFSET
	CLKMGR_DELETE_USER DEFINED_TIMESERVER
	CLKMGR_GET_ACTIVE_ TIMESERVER
	CLKMGR_GET_DAYLIGHTSAVI NGS_OFFSET
	CLKMGR_GET_END_ DAYLIGHTSAVINGS_RULE
	CLKMGR_GET_RESYNC_ PERIOD
	CLKMGR_GET_START_ DAYLIGHTSAVINGS_RULE
	CLKMGR_GET_ TIMESERVERS
	CLKMGR_GET_TIMEZONE
	CLKMGR_IS_ DAYLIGHTSAVINGS_ON
	CLKMGR_IS_NETWORK_ SOURCED
	CLKMGR_SET_ACTIVE_ TIMESERVER
	CLKMGR_SET_CLK_ SOURCE
	CLKMGR_SET_ DAYLIGHTSAVINGS_MODE
	CLKMGR_SET_ DAYLIGHTSAVINGS_ OFFSET
	CLKMGR_SET_END_ DAYLIGHTSAVINGS_RULE
	CLKMGR_SET_RESYNC_ PERIOD
	CLKMGR_SET_START_ DAYLIGHTSAVINGS_RULE
	CLKMGR_SET_TIMEZONE

	Combine & Uncombine Keywords
	Overview
	Combining and Un-Combining Devices
	Combining Devices
	Un-combining Devices

	Combining and Un-Combining Levels
	Combining Levels
	Un-combining Levels

	Combining and Un-Combining Channels
	Combining Channels
	Un-combining Channels

	COMBINE & UNCOMBINE Keywords
	COMBINE_CHANNELS
	COMBINE_DEVICES
	COMBINE_LEVELS
	DEFINE_COMBINE
	DEFINE_CONNECT_LEVEL
	UNCOMBINE_CHANNELS
	UNCOMBINE_DEVICES
	UNCOMBINE_LEVELS

	Compiler Keywords
	__DATE__
	__FILE__
	__LDATE__
	__LINE__
	__NAME__
	__TIME__

	Conditional & Loop Keywords
	Overview
	Conditionals
	IF…ELSE
	SELECT…ACTIVE
	SWITCH...CASE Statements

	Loops
	FOR Loops
	WHILE Loops
	LONG_WHILE statements

	Conditional and Loop Keywords
	BREAK
	DEFAULT
	ELSE
	FOR
	IF
	IF...ELSE
	INCLUDE
	SELECT…ACTIVE
	SWITCH...CASE
	WHILE
	MEDIUM_WHILE
	LONG_WHILE
	FALSE
	TRUE

	Data Event Keywords
	AWAKE
	COMMAND
	HOLD
	ONERROR
	OFFLINE
	ONLINE
	REPEAT
	STANDBY

	Data Types and Conversion Keywords
	Overview
	Intrinsic Data Types
	Intrinsic Data Type Keywords
	CHAR
	WIDECHAR
	INTEGER
	SINTEGER
	LONG
	SLONG
	FLOAT
	DOUBLE

	Structured Data Types
	DEV
	DEVCHAN
	DEVLEV
	Combining and Uncombining Device/Channel Sets

	Type Conversion
	Type Conversion Rules

	Conversion Keywords
	ATOI
	ATOF
	ATOL
	CH_TO_WC
	FTOA
	HEXTOI
	ITOA
	FORMAT
	ITOHEX
	RAW_BE
	RAW_LE

	DEFINE Keywords
	Overview
	DEFINE_CALL
	DEFINE_FUNCTION
	DEFINE_CONSTANT

	DEFINE Keywords
	DEFINE_CALL
	DEFINE_COMBINE
	DEFINE_CONNECT_LEVEL
	DEFINE_CONSTANT
	DEFINE_DEVICE
	DEFINE_EVENT
	DEFINE_FUNCTION
	DEFINE_LATCHING
	DEFINE_MODULE
	DEFINE_MUTUALLY_ EXCLUSIVE
	DEFINE_PROGRAM
	DEFINE_START
	DEFINE_TOGGLING
	DEFINE_TYPE
	DEFINE_VARIABLE
	PROGRAM_NAME
	RETURN
	DEFINE_MUTUALLY_EXCLUSIVE and Variables

	DEVICE Keywords
	DEVICE_ID
	DEVICE_ID_STRING
	DEVICE_INFO
	DEVICE_STANDBY
	DEVICE_WAKE
	DYNAMIC_APPLICATION_ DEVICE
	MASTER_SLOT
	PUSH_DEVICE
	RELEASE_DEVICE
	PUSH_DEVCHAN
	RELEASE_DEVCHAN
	REBOOT
	SEND_COMMAND
	SYSTEM_NUMBER

	Encode / Decode Keywords
	Overview - Encoding and Decoding Binary and XML
	Encode / Decode Keywords
	STRING_TO_VARIABLE (VARIABLE DECODE)
	VARIABLE_TO_STRING (VARIABLE ENCODE)
	LENGTH_VARIABLE_TO_ STRING (VARIABLE Encode)
	LENGTH_VARIABLE_TO_XML
	VARIABLE_TO_XML
	XML_TO_VARIABLE

	Event Handler Keywords
	Overview
	Button Events
	Channel Events
	Data Events
	Level Events
	Custom Events
	Event Parameters

	Event Handler Keywords
	BUTTON_EVENT
	CHANNEL_EVENT
	DATA_EVENT
	LEVEL_EVENT
	REBUILD_EVENT()

	File Operation Keywords
	FILE_CLOSE
	FILE_COPY
	FILE_CREATEDIR
	FILE_DELETE
	FILE_DIR
	FILE_GETDIR
	FILE_OPEN
	FILE_READ
	FILE_READ_LINE
	FILE_REMOVEDIR
	FILE_RENAME
	FILE_SEEK
	FILE_SETDIR
	FILE_WRITE
	FILE_WRITE_LINE

	Get Keywords
	GET_AVAILABLE_FLASH_ DISK_SPACE
	GET_DNS_LIST
	GET_IP_ADDRESS
	GET_LAST
	GET_MAX_FLASH_DISK_ SPACE
	GET_PULSE_TIME
	GET_SERIAL_NUMBER
	GET_SYSTEM_NUMBER
	GET_TIMER
	GET_UNIQUE_ID
	GET_URL_LIST
	GET_URL_LIST Flags Member Bit Fields

	IP Keywords
	Overview - IP Communication
	Client Programming
	Initiating a conversation
	Terminating a conversation
	Sending data
	Receiving data

	Server Programming
	Listening for client requests
	Multiple client connections
	Closing a local port
	Connection-Oriented notifications
	Receiving data
	Sending data
	Receiving Data with UDP
	Multicast
	Example IP Code

	IP Keywords
	ADD_URL_ENTRY
	DELETE_URL_ENTRY
	GET_DNS_LIST
	GET_IP_ADDRESS
	IP_BOUND_CLIENT_OPEN
	IP_CLIENT_CLOSE
	IP_CLIENT_OPEN
	IP_MC_SERVER_OPEN
	IP_SERVER_CLOSE
	IP_SERVER_OPEN
	IP_SET_OPTION
	SET_IP_ADDRESS
	SET_DNS_LIST
	ADD_URL_ENTRY Flags Member Bit Fields
	GET_IP_ADDRESS Flags Member Bit Fields

	Level Keywords
	~LEVSYNCON
	~LEVSYNCOFF
	COMBINE_LEVELS
	CREATE_LEVEL
	DEFINE_CONNECT_ LEVEL
	SEND_LEVEL
	SET_VIRTUAL_LEVEL_ COUNT

	Listview Keywords
	LISTVIEW_ON_ROW_SELECT_EVENT
	DATA_FEED
	DATA_FIELD
	DATA_RECORD
	WC_DATA_FEED
	WC_DATA_FIELD
	WC_DATA_RECORD
	DATA_CREATE_FEED
	DATA_DELETE_FEED
	DATA_PUBLISH_FEED
	DATA_GET_PUBLISHED_FEED
	DATA_ADD_RECORD
	DATA_GET_EVENT_RECORD
	_WC_DATA_CREATE_FEED
	_WC_DATA_ADD_RECORD
	_WC_DATA_GET_EVENT_RECORD

	Log Keywords
	SET_LOG_LEVEL
	GET_LOG_LEVEL
	AMX_LOG

	Math Functions
	EXP_VALUE
	LOG_VALUE
	LOG10_VALUE
	POWER_VALUE
	SQRT_VALUE

	Module Keywords
	NetLinx Modules
	Defining a Module
	Using a Module in a Program

	Module Keywords
	DEFINE_MODULE
	DUET_MEM_SIZE_GET
	DUET_MEM_SIZE_SET
	MODULE_NAME

	Operator Keywords
	Overview
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Bitwise Operators
	Assignment Operators
	Operator Precedence

	Operator Keywords
	AND (&&)
	BAND (&)
	BNOT (~)
	BOR (|)
	BXOR (^)
	LSHIFT
	MOD (%)
	NOT (!)
	OR (||)
	RSHIFT
	XOR (^^)

	Port Keywords
	DYNAMIC_POLLED_PORT
	FIRST_LOCAL_PORT
	STATIC_PORT_BINDING

	Push and Release Keywords
	DO_PUSH
	DO_PUSH_TIMED
	DO_RELEASE
	MIN_TO
	PUSH
	PUSH_CHANNEL
	PUSH_DEVCHAN
	PUSH_DEVICE
	RELEASE
	RELEASE_CHANNEL
	RELEASE_DEVCHAN
	RELEASE_DEVICE
	TO

	SET Keywords
	SET_DNS_LIST
	SET_IP_ADDRESS
	SET_LENGTH_ARRAY
	SET_LENGTH_STRING
	SET_OUTDOOR_ TEMPERATURE
	SET_PULSE_TIME
	PULSE
	SET_SYSTEM_NUMBER
	SET_TIMER
	SET_VIRTUAL_CHANNEL_ COUNT
	SET_VIRTUAL_LEVEL_COUNT
	SET_VIRTUAL_PORT_COUNT

	SMTP Keywords
	Overview
	SMTP_SERVER_CONFIG_SET
	SMTP_SERVER_CONFIG_GET
	SMTP_SEND

	String Keywords
	Overview
	String Expressions
	Wide Strings

	STRING Keywords
	CHARD
	CHARDM
	COMPARE_STRING
	FIND_STRING
	LEFT_STRING
	LENGTH_STRING
	LOWER_STRING
	MAX_LENGTH_STRING
	MID_STRING
	REDIRECT_STRING
	REMOVE_STRING
	RIGHT_STRING
	SEND_STRING
	SET_LENGTH_STRING
	STRING
	STRING_TO_VARIABLE
	UPPER_STRING
	VARIABLE_TO_STRING

	Structure Keywords
	Overview
	Example - Using Structures to Define a Database Table
	Data Sets

	STRUCTURE Keywords
	DEFINE_TYPE
	STRUCT
	STRUCTURE

	Terminal Keywords
	SSH_CLIENT_CLOSE
	SSH_CLIENT_OPEN

	Time and Date Keywords
	ASTRO_CLOCK
	CLOCK
	DATE
	DATE_TO_DAY
	DATE_TO_MONTH
	DATE_TO_YEAR
	DAY
	DAY_OF_WEEK
	LDATE
	TIME
	TIME_TO_HOUR
	TIME_TO_MINUTE
	TIME_TO_SECOND

	Timeline Keywords
	Overview
	Creating a Timeline
	TIMELINE Example
	TIMELINE IDs
	TIMELINE_ACTIVE
	TIMELINE_CREATE
	TIMELINE_EVENT
	TIMELINE_GET
	TIMELINE_KILL
	TIMELINE_PAUSE
	TIMELINE_RELOAD
	TIMELINE_RESTART
	TIMELINE_SET

	UniCode Keywords
	Overview
	Working With UniCode in NetLinx Studio
	Configuring NetLinx Studio
	Enabling UTF-8 in NetLinx Studio
	Enabling Unicode Compiling in NetLinx Studio

	Including the Unicode Library
	Defining a Unicode String Literal
	Storing a Unicode String
	Working with WIDECHAR Arrays and Unicode Strings
	Character Case Mappings
	Concatenating String
	Converting Between WIDECHAR and CHAR
	Using FORMAT
	Reading and Writing to Files
	Send Strings to a User Interface
	Right-to-Left Unicode Strings
	Compiler Errors

	UniCode Keywords
	_WC
	WC_COMPARE_STRING
	WC_CONCAT_STRING
	WC_DECODE
	WC_ENCODE
	WC_FILE_CLOSE
	WC_FILE_OPEN
	WC_FILE_READ
	WC_FILE_READ_LINE
	WC_FILE_WRITE
	WC_FILE_WRITE_LINE
	WC_FIND_STRING
	WC_GET_BUFFER_CHAR
	WC_GET_BUFFER_STRING
	WC_LEFT_STRING
	WC_LENGTH_STRING
	WC_LOWER_STRING
	WC_MAX_LENGTH_STRING
	WC_MID_STRING
	WC_REMOVE_STRING
	WC_RIGHT_STRING
	WC_SET_LENGTH_STRING
	WC_TO_CH
	WC_TP_ENCODE
	WC_UPPER_STRING

	Variables Keywords
	Overview
	Scope
	Local Variables
	Global Variables

	Constancy
	Persistence
	Non-Volatile Variables
	Volatile Variables
	Persistent Variables

	Constants
	Variables Keywords
	ABS_VALUE
	CONSTANT
	LOCAL_VAR
	MAX_VALUE
	MIN_VALUE
	NON_VOLATILE
	OFF
	ON
	PERSISTENT
	RANDOM_NUMBER
	STACK_VAR
	TOTAL_OFF
	TYPE_CAST
	VOLATILE

	Wait Keywords
	Overview
	Types of Waits
	Naming Waits
	Nesting Waits
	Using Waits - Limitations

	WAIT keywords
	CANCEL_ALL_WAIT
	CANCEL_ALL_WAIT_UNTIL
	CANCEL_WAIT
	CANCEL_WAIT_UNTIL
	PAUSE_ALL_WAIT
	PAUSE_WAIT
	RESTART_ALL_WAIT
	RESTART_WAIT
	WAIT
	WAIT_UNTIL
	TIMED_WAIT_UNTIL

	Appendix A - Compiler Warning & Errors
	Compiler Warnings
	(w) Cannot assign unlike types
	(w) DEFINE_CALL is not used
	(w) Integer applies to arrays only
	(w) Long_While within While
	(w) Possibly too many nested levels
	(w) Variable is not used

	Compiler Errors
	A "<symbol>" was expected
	ACTIVE keyword expected
	Allowed only in DEFINE_START
	Attempted CALL to undefined subroutine
	Comment never ends, EOF encountered
	Conditional compile nesting too deep
	Constant type not allowed
	DEFINE_CALL must have a name
	DEFINE_CALL name already used
	Device values must be equal
	Duplicate symbol
	Evaluation stack overflow
	Evaluation stack underflow
	Identifier expected
	Identifier is not an array type
	Include file not found
	Invalid include file name
	Library file not found
	Maximum string length exceeded
	Must be char array reference
	Must be integer reference
	Out of memory
	Parameter mismatch in CALL
	PROGRAM_NAME must be on line 1
	Push/Release not allowed within Push/ Release
	Push/Release not allowed within Wait
	PUSH_CHANNEL not allowed within Wait
	RELEASE_CHANNEL not allowed within Wait
	PUSH_DEVICE not allowed within Wait
	RELEASE_DEVICE not allowed within Wait
	String constant expected
	String constant never ends, EOF encountered
	String literal expected
	Subroutine may not call itself
	Syntax error
	SYSTEM_CALL name not same as PROGRAM_NAME in <file>
	This variable type not allowed
	TO statements that occur outside the data flow of PUSH events/statements may not work
	Too few parameters in CALL
	Too many include files
	Too many parameters in CALL
	Type mismatch in function CALL
	Undefined identifier
	Unmatched #END_IF
	Unrecognized character in input file
	Use SYSTEM_CALL [instance] 'name'
	Variable assignment not allowed here
	Wait not found

	Run-Time Errors
	Bad assign 2dim...
	Bad assign Call...
	Bad element assign...
	Bad Off... Bad On... Bad To...
	Bad re-assign Call...
	Bad run token
	Bad Set_Length...
	Bad While

	Appendix B - Master-To-Master (M2M)
	Overview
	Master-to-Master
	Master Routing
	Route Modes (Normal and Direct)

	Design Considerations, Constraints, and Topologies
	Design Considerations
	Constraints
	Chain Topology
	Star Topology
	Cluster Topology
	Cascade Topology
	Cluster Topology Modified

	Configuring and Programming M2M Systems
	Using NetLinx Studio with M2M Systems
	Using Telnet with M2M Systems
	Control/NetLinx Language Support
	Design Consideration and Constraints
	Inter-Master Variables
	Using Virtual Devices as Moderators
	Code Example: Tracking Online/Offline State In a Remote Master
	Modifying the URL List From Within the NetLinx Code
	M2M Processing Queues and Troubleshooting
	General M2M Issues

	Appendix C - Marshalling Protocol
	Overview
	Marshalled Stream Format
	BYTE
	WORD
	DWORD
	QWORD
	BYTESTR
	WORDSTR
	DWORDSTR
	QWORDSTR
	LBYTESTR
	STRUCT
	ENDSTRUCT
	ARRAY
	SKIP

	Marshalling Protocol (Variables)
	Marshalled Stream Format
	BYTE
	UWORD
	WORD
	ULONG
	LONG
	FLOAT
	DOUBLE
	STRUCT
	ARRAY
	Array - String encoding (Strings)
	ARRAY - Binary Encoded

	Encoding Notes
	String Encoding
	Binary Array Encoding
	Binary Encoding Result
	XML Encoding Result

	Appendix D - NetLinx vs. Axcess
	Overview
	NetLinx vs. Axcess - Comparison by Structure
	DEFINE_DEVICE
	DEFINE_CONSTANT
	DEFINE_VARIABLES
	DEFINE_CALL (Subroutines)
	DEFINE_START
	DEFINE_EVENT
	DEFINE_PROGRAM

	Axcess/NetLinx Incompatibility
	Combining Devices, Channels and Levels
	Virtual devices, levels and device/channel sets
	Combining and Uncombining devices
	Combining and Uncombining levels
	Combining and Uncombining channels

	String Comparisons
	Axcess code - string comparison
	NetLinx code - string comparison

	Modules

